Missing Data

Missing data is common in epidemiology studies, and always observed in longitudinal studies.
Inadequate handling of missing data may cause bias or lead to inefficient analyses. If an estimate
is incomplete, we can remove it without introduce bias. If a variable is heavily missing, it may be
appropriate to remove the variable then remove all incomplete records.

There is a difference between missing and "unknown" data. Ex. someone refusing to report income
on a survey would be considered missing, but an individual who has no preference between
republican and democrat candidates may be considered a new category of "do not know".

Missing Data Mechanisms

The way to analyze incomplete data depends on the underlying missing data mechanisms. Ex. Is
the missing data the same between males and females? Are values which are higher or lower more
likely to be missing?

e Missing completely at random (MCAR): No systematic differences between the missing
values and the observed values.
o Ex. Blood pressure measurements missing because of a broken tool
o In this case, the missing data mechanism is ignoreable, and missing data for the
outcome can be ignored
e Missing at random (MAR): Any systemic difference between the missing values and the
observed values can be explained by differences in observed data.
o Ex. Missing blood pressure measurements may be lower than those measured
because younger people are more likely to be missing measurements.
e Missing not at random (MNAR): Even after the observed data are taken into account,
systematic differences remain between the missing values and the observed values.
o Ex. people with hypertension missing clinic appointment because of headaches

MAR vs MCAR

If the data are MCAR we can analyze complete cases

If the data are MAR missing data should not be ignored

Deterministic imputation can introduce bias/overconfidence, particularly when more than
10% of the data is missing

o Marginal imputation reduces power and bias results toward the null
We can distinguish MCAR from MAR by observing the distribution of the indicator variable
and see whether it is correlated with the observed data



Missing Data Patterns (Univariate)

Suppose we have a sample of size n, with some missing data points where:
Sample Y=(¥,Y--NA,..,y.,NA,...y )
Indicator variable R=(0, O,..., 1..,0, 1..,0)

1 1if y, missing

0 1if y, observed

The pattern of missing data can be described via the distribution of the indicator variable R:

R 1 with probability p(R,)
" |0 with probability 1-p(R,)

e If the probability that Ri=1 is independent of the value Y, for any index i, the missing

data pattern is ignorable. Equivalently. data are MAR
o The observed data are a random sample of complete but unobserved sample
o We can remove the data with the only effect being a decrease in power due to

sample size
e If the probability that R =1 is NOT independent of the value Y for any index i, the
missing data pattern is NOT ignorable, i.e. MNAR, the data are informatively missing
o The observed data does not represent a random sample of complete data.
o Missing data is not ignorable, removing it may introduce bias

Missing Data Patterns (Mutlivariate)

Assume we have a multivariate dataset with outcome Y and covariates Xl—Xk

Suppose we only have missing data on Y. As in the univarite case, the patterns of missing data can
be described via the distribution of the indicator variable R.

Sample y=1¥Vy,uNA,.., ¥y, ,NA,..Y.)

IndicatorvariableR=(0, O,..., 1,..,0, 1,..,0)
1 if y; missing
“loif y; observed

Where Ri=1 has probability P*R,, and R,=0 has probability 1-p*R,
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e If the probability that R =1 is independent of the value Y and the covariates for any
index, the missing data mechanism is ignorable and the data are MCAR.

o If the probability that R, = 1 is independent of the value y,, but is depedent the covariates
for any index, the missing data mechanism is ignorable and the data are MAR. However,
the observed sample may not be a random subsample of the complete one.

e If the probability that R =1 is dependent of the value Y the missing data pattern is NOT
ignorable, i.e. MNAR, the data are informatively missing

Imputation

Imputation is the idea that we can fill in the missing data using either a deterministic or stochastic
method or combination of both.

e Deterministic imputation
o Refers to the situation given specific values of other fields, when only one value of a
field will cause the record to satisfy all of the edits, such as using the mean or
median
e Stochastic (regression) imputation
o This method uses regression, it adds a random error term to the predicted value and
is therefore able to reproduce the correlation of X and Y more appropriately.

Other procedures include EM algorithm, Markov Chain Monte Carlo Bayesian method, weighted
methods (IPW), etc.

Multiple Imputation

To avoid the bias of the deterministic imputation, the following methods are applied:

Imputing the missing data randomly

Repeating the imputation many times

Analyzing each imputed data set

Summarizing the estimate by mean over the different sets and correct the variance

There is a paper on this by Sterne et al which explains the pitfalls and reporting procedure, but |
will not go into detail here.

Other methods to fill-in missing data

e Marginal mean imputation: replace the missing y-values with the marginal mean based on
the complete cases.
o This biases the data toward the null hypothesis, if the data are MCAR
o Conditional mean imputation: replace the missing y-value with the conditional mean (E(Y |
X))
o This imputation biases the data toward the hypothesis of an association with the
covariates



Note that to assess confounding we compute crude estimates against adjusted with the same
imputed data. It is very important to use the same dataset to keep results consistent.

R Code

framdat2 <- read.table("C:/Users/liuc/Documents/BS852/BS852 Fall2021/class12/framdat2.txt",header=T,
na.strings=c("."))

summary(framdat2)

# Proportion missing per variable

for(i in 1:ncol(framdat2)){
print(names(framdat2)[i])
print(sum(is.na(framdat2[,i]))/nrow(framdat2))

} # 6 of the variables have missing data

# Distribution of incomplete cases
num.miss <- apply(is.na(framdat2),1,sum)
table(num.miss)

length(num.miss[which(num.miss %in% c(1:6))])
MRW <- is.na(framdat2$MRW)

# Missing MRW

table(MRW)

# Missing GLI by sex

table(framdat2$SEX, MRW)/apply(table(framdat2$SEX, MRW),1,sum)

# Is missing GLI associated with sex?

summary(glm(MRW~framdat2$SEX, family=binomial(link = "logit")))
cbind(framdat2$FVC, is.na(framdat2$FVC))[1:28,]

sim.data <- read.csv("C:/Users/liuc/Documents/BS852/BS852_Fall2021/class12/sim.data.csv",header=T,

na.strings=c("."))

# crude and adjusted models

summary(Im(y ~ SMOK, data=sim.data))

summary(Im(y ~ SMOK + Age + BMI + SEX, data=sim.data))



# 10% MCAR
set.seed(1234)

R <- rbinom(nrow(sim.data), p=0.10, size=1) # randomly select data to keep

mod.1l0mcar.crude <- Im(y ~ SMOK, data=sim.data[R==0,])

mod.10mcar.adj <- Im(y ~ SMOK + Age + BMI + SEX, data=sim.data[R==0,])

summary(mod.10mcar.crude); summary(mod.10mcar.adj)

# Marginal Mean Imputation
# 10% MCAR
set.seed(1234)

R <- rbinom(nrow(sim.data), p=0.10, size=1)

mean.obs.y <- mean(sim.data[R==0,]$y) ## complete data
sim.data$y.imputed <- sim.data$y
sim.data$y.imputed[R==1] <- mean.obs.y

boxplot(list(raw=sim.data$y, imputed=sim.data$y.imputed))

mod.imputed.crude <- Im(y.imputed ~ SMOK, data=sim.data)

summary(mod.imputed.crude)

mod.imputed.adj <- Im(y.imputed ~ SMOK+Age+BMI+SEX, data=sim.data)

summary(mod.imputed.adj)

# Conditional Mean Imputation
# 10% MCAR
set.seed(1234)

R <- rbinom(nrow(sim.data), p=0.10, size=1)

imp.model <- Im(y ~ SMOK+Age+BMI+SEX, data=sim.data[R==0,])

summary(imp.model)

imp.model$coeff

sim.data$y.imputed[R==1] <- imp.model$coeff[1]+
imp.model$coeff[2]*sim.data$SMOK[R==1]+
imp.model$coeff[3]*sim.data$Age[R==1]+
imp.model$coeff[4]*sim.data$BMI[R==1]+
imp.model$coeff[5]*sim.data$SEX[R==1]

boxplot(list(raw=sim.data$y,imputed=sim.data$y.imputed))



mod.imputed.crude <- Im(y.imputed ~ SMOK, data=sim.data); summary(mod.imputed.crude)

mod.imputed.adj <- Im(y.imputed ~SMOK+Age+BMI+SEX, data=sim.data); summary(mod.imputed.adj)

# Distinguish MCAR from MAR
set.seed(1234)

p.miss <- c()
for (i in 1:nrow(sim.data)){

p.miss[i] <- max(0, sim.data$Age[i]/400 + runif(n=1, min=0, max=0.02))
}

R <-c()
for (i in 1:nrow(sim.data)){
R[i] <- rbinom(n=1, size=1, p=p.missli])

}
mod.mar <- gIm(R ~ sim.data$Age+sim.data$BMI, family=binomial)

mod.step <- step( mod.mar, scope = R~.)

summary(mod.step)

hdl.data <- read.csv("hd|_data.csv",header=T, na.strings=c("."))

hdl.data.2 <- hdl.data[, c("SEX","BMI5","AGE5","ALC5","CHOL5","TOTFAT _C")]
summary(hdl.data.2)

summary(Im(TOTFAT_C~SEX+BMI5+AGE5+ALC5+CHOL5, data=hdl.data.2))

# Create missing data indicator for TOTFAT_C

R <- rep(0, nrow(hdl.data.2))

R[which(is.na(hdl.data.2$TOTFAT C)==T)] <-1

mod.mar <- gim(R ~ AGE5 + BMI5 + SEX, family = binomial, data=hdl.data.2)

step(mod.mar, scope=R~.)

library(Amelia)

set.seed(1234)

imp.data <- amelia(hdl.data.2, m=10) ## 10 imputed datasets



summary(imp.data[[1]][[1]1])

beta.bmi <- c(); se.beta <- c()

for(i in 1:10){
mod <- Im(TOTFAT_C~SEX+BMI5+AGE5+ALC5+CHOL5, data=imp.data[[1]1][[i]])
beta.bmi <- c(beta.bmi,
summary(mod)$coefficients[grep("BMI5", row.names(summary(mod)$coefficients)),1])
se.beta <- c(se.beta,

summary(mod)$coefficients[grep("BMI5", row.names(summary(mod)$coefficients)),2])}

beta.mean <- mean(beta.bmi); beta.mean
beta.var <- mean(se.beta”™2) + var(beta.bmi)

beta.mean/sqgrt(beta.var)

# significance based on Wald test

2*(1-pnorm(beta.mean, 0, sqrt(beta.var)))

beta.bmi <- c(); se.beta <- c()
for(i in 1:10){
mod <- Im(TOTFAT_C~ BMI5, data=imp.data[[1]][[i]])
beta.bmi <- c(beta.bmi,
summary(mod)$coefficients[grep("BMI5", row.names(summary(mod)$coefficients)),1])
se.beta <- c(se.beta,

summary(mod)$coefficients[grep("BMI5", row.names(summary(mod)$coefficients)),2]) }

beta.mean <- mean(beta.bmi); beta.mean
beta.var <- mean(se.beta”™2) + var(beta.bmi)

beta.mean/sqrt(beta.var)

# # significance based on Wald test

2*(1-pnorm(beta.mean, 0, sqrt(beta.var)))
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