
In 1978 Restricted Fragment Linked Polymorphisms (RFLPSs) were used for linkage
analysis.
In 1987 the first human genetic map was created.
In 1989 microstellite markers made genome-wide linkage studies possible.
1990-2003 the human genome project was sequenced.
2002-2006 HapMap project collected sequences in populations to discover variation
across the genome.
2006 onward, Genome-Wide Association Studies (GWAS)
2010 onward, large scale custom arrays
2010 onward, sequencing technology becomes affordable
Even more WGS projects...

ADSP 2012
TOPMed 2014
CCDG 2014

Prior to the GWAS era, genetic association studies were hypothesis driven; Testing markers
within/near the gene or region for association. "H0: The trait X is caused/influenced by Gene A."
The hypothesis (gene or genes) came from:

Experiments in other species
Known associations with a related trait in humans
Linkage analysis localizing trait to a specific chromosomal region

Hypothesis generating
Assumes only that there are genetic effects large enough to find
Asks what genes/variants are associated with my trait

500k -> 5 million genes/variants across genome
Multiple genome-wide chips available
Varying strategies for SNP selection
Imputation allows testing of ungenotyped SNPs
Typically GWAS chips have focused on common SNPs with frequency > 1%

Multiple Comparisons and
Evaluating Significance

Chip-based Genome-wide Association
Scans



Limits testing to locations of perceived high-prior-probability
"If you look under the lamppost you can only see what it illuminates"

Extreme multiple testing - requires large sample size, meta-analysis of multiple studies to
overcome
Gives an "unbiased" view of the genome
Allows unexpected discoveries

Identifies known SNPs (that would be on a chip) but also previously undiscovered variants.
Attempts to assay all, or nearly all, variation in genome or exome

Whole exome:
~1% of the genome
~30 million bp
Number of variants observed depends on sample size and population

Whole genome: 3 billion bp,  > 30 million known variants in 1000G project

There many things to test in genetic association studies:

Multiple phenotypes
Multiple SNPs

Candidate gene or region association
Genome-wide association
Haplotype Analyses

Gene-Gene or Gene-environmental Interactions

The multiple tests are often correlated.

Type I error: Null hypothesis of "no association" is rejected, when in fact the marker is NOT
associated with that trait.
This implies research will spend a considerable amount of resources focusing on a gene or
chromosomal region that is not truly important for your trait.

Type II error: Null hypothesis of "no association" is NOT rejected, when in fact the trait and
marker are associated.
This implies the chromosomal region/gene is discarded; a piece of the genetic puzzle remains
missing for now.

Candidate

Genome-Wide

Whole Genome or Exome Sequencing

Statistical Significance



The significance level alpha for a single statistical test is the type-I error rate for that test.
If we perform multiple tests within the same study at level alpha, the type-I error rate
specified will apply to each specific test but not to the entire experiment (unless some
adjusted is made).
Probability of a type II error is beta.
Power = 1 - Beta

For a multiple testing problem with m tests:

Family-wise error rate (FWER) is the probability of at least one type I error; FWER = P(V > 0)

False discovery rate (FDR) is the expected proportion of type I errors among the rejected
hypotheses; FDR = E(V/R)
    Assume V/R = 0 when R = 0

The general strategy is to adjust p-value of each test for multiple testing; Then compare the
adjusted p-values to alpha, so that FWER can be controlled at alpha.

Equivalently, determine the nominal p-value that is required achieve FWER alpha.

Sidák adjusted p-value is based on the binomial distribution:

Each test is a trial. Under the null hypothesis, the probability of success is p, the
significance level that is used
The probability of at least one success in m trials, each with probability p:

For a test with p-value pi to adjust for m total tests, the adjusted p-value is pi
* = 1 - (1 - pi)m

Procedures to Control FWER

Sidák
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This is conservative (over-corrects) when the tests are not independent

A simplification of Sidák:

Bonferroni adjusted p-value: 

pi
* = mpi

Over-coirrects (conservative) if the tests are correlated

Below are the individual p-values needed to reject for family-wise significance level=.05

The probability that the minimum p-value from m tests is smaller than the observed p-value when
ALL of the tests are NULL.

Equivelent to Sidak adjustment if all tests are independent. But for dependent tests, we don't know
the distribution of the p-values under the null hypothesis, so we use permutation to determine
the distribution.

Adjusted p-value is the probability that the minimum p-value in a resampled data set is smaller
than the observed p-value.

This is less conservative than the above two methods, but the results are equal to Sidak when tests
are significant.

Permutation is done under the assumption that the phenotype is independent of the genotypes;
and phenotypes are permuted with respect to genotype.
Original

Bonferroni

minP
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Permuted:

Genotypes from an individual are kept together to preserve LD

Create 1000+ permuted data sets
Identical to the original except phenotype values have been assigned randomly

Analyze each in exactly the same manner as the original data set
Determine the minimum p-value from each permuted data set

1000+ minimum p-values
The minP adjustment: the adjusted p-value is the proportion of minimum p-values that are
smaller than the observed p-value.

Permutation is computationally expensive, and in some situations it is not possible at all (related
individuals, meta-analysis results).

Use the Bonferroni or Sidak correction with the "effective number of independent tests" instead of
total number of tests. This reduces the number of tests to account for dependence among test
statistics. We must approximate the equivalent number of independent tests.

For a single study you can compute the effective number of independent tests based on the
genotype data.

Use the covariance matrix of all the genotypes that you tested
Several approaches have been proppsed to estimate the effective number of tests (meff)
Two are best performing:

Gao X, Starmer J, Martin ER: A multiple testing correction method for genetic
association studies using correlated SNPs
Li J, Ji L: Adjusting multiple testing in multi-locus analyses using the eigenvalues of a
correlation matrix

Once you have an estimate of meff use it in the Bonferroni or Sidak correction

Another alternative: Extreme Tail Theory Approximation (not covered here)

Permutation Procedure

Alternative
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Binferroni, Sidak, minP are all single-step adjustments; i.e. all p-values are adjusted in the same
manner regardless of their values. This makes them very easy to understand and compute,
however it sacrifices power.

Control FWER is very stringent (< 5% chance of a single false positive)

Controlling P(V = 0) is too stringent when m is large and you can expect multiple true positives. For
better power,  control E(V/R) instead.

E(V/R) = the expected proportion of Type I errors among rejected null hypothesises.

1. Rank p-values pr1 <= pr2 <= ... prm
2. Adjusted p-values

1. p*rm = prm
2. p*rk = min(p*rk+1, prkm/k)

For an individual hypothesis test, the minimum FDR at which the test may be called significant is
the q-value. It indicates the expected proportion of false-positive discoveries among associations
with equivalent statistical evidence.

FDR for a specific p-value threshold t:

where m0 = number of true null hypothesis

We can estimate m0 by m*pi_hat_0; where pi_hat_0 is an estiamte of the proportion of true null
hypothesises (could be ~1)

1. Rank p-values: pr1 <= pr2 <= ... prm
2. Estimate the proportion of true null hypothesises pi_hat_0

1. Using pi_hat_0 = 1 leads to conservative q-values estimates equal to the FDR
adjusted p-values

2. See suggested approach in Story and Tibshirani (2003)
3. Compute q-values:

FWER Summary

False Discovery Rate (FDR)

FDR: Q-Value
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4. Reject null hypothesis f q-value <= alpha

Bonferroni and Sidak
Almost no assumptions
No permutations required
Use when number of tests is small or power is not an issue, or if a quick computation
is needed
When number of tests is moderate and correlation structure of tests or SNP uses:

Extreme tail theory
Benferroni adjustment with number of effective independent SNPs

Permutation approach
Does not assume independence of SNPs
Use when computationally feasible

FDR or q-value
Controlling E(V/R) instead of P(V > 0)
Useful for exploratory analyses with a large number of markers/models/subgroups to
test

FDR and q-value thresholds are often set higher than traditional (.05) level
First proposed for analyzing micro-array data

Works best when the proportion of null hypotheseses expected to be rejected
because they are false is not too small.

Genome-Wide Association Study (GWAS)
Must adjust for all tests performed to claim experiment wide significance
Common strategies:

Staged Design:
Stage 1: GWAS on subset of available subjects
Stage 2: Independent sample/subset, test only the small subset of SNPs
that were significant at some level in Stage 1

Meta-analysis of multiple studies
Each study performs GWAS
Results from all studies are combined

Combination of these two approaches

Which to use?

Guidelines for Adjusting for Multiple
Comparisons
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Staged GWAS
Two alternatives for multiple testing correction

Replication: Analyze Stage 2 separately, adjust stage 2 for number of tests in
stage 2
Joint analysis: Analyze stage 1 and 2 jointly for SNPs genotyped in stage 2,
adjust joint analysis for all SNPs tested in stage 1

Usually joint analysis strategy more powerful
Joint analysis is more efficient than replication based analysis at two stage
genome-wide association studies.

GWAS meta-analysis
For each SNP, combine results from all studies
Similar in power to a study with sample size = sum of all sample sizes
Significance levels appropriate for single GWAS are appropriate for meta-analysis
GWAS

Candidate gene studies
Often we will test SNPs that have already been associated in other independent
studies
Whether the candidate genes were chosen based on prior association, linkage or
relevance of any kind

must adjusted for all tests performed in your study to claim experiment-wise
significance for any one SNP

Overall: we are unlikely to have sufficient power to achieve experiment-wide or genome-wide
significance with a single study, large number of SNPs

Best choice is meta-analysis and/or replication using independent studies

When combining studies is not an option, report the most promising results based on p-value and
other factors

Make available results from all SNP association analyses so that other investigators can attempt to
confirm or repliucate your findings.

Choose a threshold BEFORE looking at the data.

Genomic control was preposed to measure and adjust for modest population structure within a
sample in the context of GWAS

Most SNPs that are tested in a GWAS (which is most) are not associated with the trait
Association tests from random sites in the genome shouhld be distributed as if a set of
unassocaited (null) tests

Genomic Control



The genomic control inflation factor ��GC or just ��, is defined as:

Typically estimated using the entire set of GWAS variants
�� is a measure of the inflation of test statistics in your GWAS
If your study has population structure then the unassociated test statistics will not follow
the null distribution.

On average, each statistic will be a bit "too big"
The median of the test statistics will be larger than the median test statistic from the
null distribution, so �� > 1

�� can also be used to deflate test statistics so that the observed median matches the
expected distribution

Compute ��
Divide all test statistics by �� before computing p-value

GC correction assumes that all the GWAS test statistics are inflated an equal amount

PLINK outputs Z statistics in the STAT column, but �� is calculated from chi-square test statistics. Z2

is a chi-square statistic with 1 degree of freedom. We can transform the p-value from plink into chi
using the qchisq() function in R.
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