
When the class is created we can see there are 'Aware' interfaces that get inialized
BeanNameAware
BeanFactoryAware
ApplicationContextAware

Container Shutdown -> Disponable Bean's destroy() -> Call custom destroy method ->
Terminated

Spring has two interfaces you can implement for call back events
InitializingBean.afterPropertiesSet()

called after properties are set
DisposableBean.destroy()

called during bean destruction in shutdown

Spring Bean Life Cycle

Shutdown

Callback Interfaces

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155826887.png


Spring has two annotations you can use to hook into the bean life cycle
@PostConstruct

called after the bean has been constructed but before its returned to the requesting
object

@PreDestroy
called just before the bean is destroyed by the container

Gives you a means to tap into the Spring context life cycle and interact with beans as they
are processed
Implement interface BeanPostProcessor
postProcessBeforeInitialization

called before bean initialization method
postProcessAfterInitialization

called after bean initialization

Note: The guru admits in all his years he has never used these

Spring has over 14 Aware Interfaces
These are used to accses the Spring Framework infrastructure
Rarely used by Devs, mostly used within the framework itself

Life Cycle Annotations

Bean Post Processors

'Aware' Interfaces

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155856418.png


The more useful ones:
ApplicationEventPublisherAware - used for creating custom events inside spring and set
up event listeners
BeanFactoryAware - If you need to handle a bean within a process

Singleton (default) - Only one instance of the bean is created in the IoC container
Prototype - A new instance is created each time the bean is requested
Request - Single instance per http request.*
Session - Single instance per http session.*
Global-session - A single instance per global session. Typically only used in a Portlet
context.*
Application - bean is scoped to the lifecycle of a ServletContext.*
Websocket - Scopes a single bean definition to the lifecycle of a WebSocket.*
Custom scope - extensible, define your own "Scope" interface. See docs for details

*Only valid in the contex of a web-aware Spring ApplicationContext

No declaration is needed for singleton scope.

Spring Bean Scopes

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155883613.png


In Java configuration use the @Scope annotation. We see the xml configuaration above.

Revision #1
Created 17 April 2022 00:37:02 by Elkip
Updated 17 April 2022 00:39:13 by Elkip

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155896014.png

