Spring Bean Life Cycle

Spring Bean Life Cycle

Call setBeanName of

[EERIEE Populate Properties BeanNameAwara

Call setBeanFactory of Call setApplicationContext of Preinitialization (Bean
BeanFactoryAware ApplicationContextAware PostProcessors)

afterPropertiesSet of Initializing 5 Post Initialization
Beans PN TN (BeanPostProcessors)

Bean Ready to Use

e When the class is created we can see there are 'Aware' interfaces that get inialized
o BeanNameAware
o BeanFactoryAware
o ApplicationContextAware

Shutdown

Container Shutdown -> Disponable Bean's destroy() -> Call custom destroy method ->
Terminated

Callback Interfaces

e Spring has two interfaces you can implement for call back events
e InitializingBean.afterPropertiesSet()

o called after properties are set
e DisposableBean.destroy()

o called during bean destruction in shutdown


https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155826887.png

Life Cycle Annotations

e Spring has two annotations you can use to hook into the bean life cycle
e @PostConstruct
o called after the bean has been constructed but before its returned to the requesting
object
e @PreDestroy
o called just before the bean is destroyed by the container

Bean Post Processors

e Gives you a means to tap into the Spring context life cycle and interact with beans as they
are processed

e Implement interface BeanPostProcessor

e postProcessBeforelnitialization
o called before bean initialization method

e postProcessAfterinitialization
o called after bean initialization

Note: The guru admits in all his years he has never used these

'Aware' Interfaces

e Spring has over 14 Aware Interfaces
e These are used to accses the Spring Framework infrastructure
o Rarely used by Devs, mostly used within the framework itself

Aware Interface Description Aware Interface Description


https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155856418.png

The more useful ones:

e ApplicationEventPublisherAware - used for creating custom events inside spring and set
up event listeners

e BeanFactoryAware - If you need to handle a bean within a process

Spring Bean Scopes

Singleton (default) - Only one instance of the bean is created in the lIoC container
Prototype - A new instance is created each time the bean is requested

Request - Single instance per http request.*

Session - Single instance per http session.*

Global-session - A single instance per global session. Typically only used in a Portlet
context.*

Application - bean is scoped to the lifecycle of a ServletContext.*

Websocket - Scopes a single bean definition to the lifecycle of a WebSocket.*
Custom scope - extensible, define your own "Scope" interface. See docs for details

*Only valid in the contex of a web-aware Spring ApplicationContext

Singleton Scope

Only one instance is ever created...

<bean id="accountDao" class="..." />

... and this same shared instance is injected into each collaborating object

No declaration is needed for singleton scope.


https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155883613.png

Prototype Scope

A brand new bean instance is created...
scope="prototype" />
& { 3 ’

... each and every time the prototype is referenced by collaborating beans

In Java configuration use the @Scope annotation. We see the xml configuaration above.

Revision #1
Created 17 April 2022 00:37:02 by Elkip
Updated 17 April 2022 00:39:13 by Elkip


https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650155896014.png

