
@OneToOne
One Entity related to one other

@OneToMany
One entity is related to many entities (List, Set, Map, SortedSet, SortedMap)

@ManyToOne
Inverse of OneToMany

@ManyToMany
Many entities are related to many entities
Each has a List or Set reference to the other
A join table is used to define relationships

Unidirectional - mapping is only done one way, one side does not know about relationship
Bidirectional - both entities know about each other (reccommended by hibernate)

The "Owning Side" of a relationship will hold the foreign key in the database.

Lazy Fetch Type - Data is not queried until referenced
Eager Fetch Type - Data is queried up front
Hibernate 5 supports the JPA 2.1 Fetch Type Defaults:

OneToMany - Lazy
ManyToOne - Eager
ManyToMany - Lazy
OneToOne - Eager

JPA

Java Persistance API

Entity Types

Fetch Type

Cascade Types



If I delete the parent will the child be deleted as well?

JPA Cascade Types control how state changes are cascaded from parent objects to child
objects
JPA Cascade Types

PERSIST - Save operations will cascade to related entities
MERGE - related entities are merged when the owning entitiy is merged
REFRESH - related entities are refreshed when the owning entity is refreshed
REMOVE - removes all related entities when the owning entity is deleted
DETACH - detaches all related entities if a manual detach occurs
ALL - Applies all the above cascade options.

By default, no operations are cascaded

JPA/Hibernate support emeddable types
These are used to define a common set of properties
For example, a package with a shipping and billing address

MappedSuperclass - Entities inherit from a super class. A database table IS NOT created
for the super class.
Single Table - (Hibernate Default) - One Table is used for all subclasses

This can lead to a lot of unused database columns
Joined Table - Base class and subclasses have their own tables.

Fetching subclass entities require a join to the table of the superclass. (could cause
preformance issues)

Table Per Class - Each subclass has its own table.

For audit purposes it is often a best practice to use timestamps
JPA supports @Prepersist and @PreUpdate which can be used to support audit timestamps
via JPA lifecycle callbacks.
Hibernate provides @CreationTimestamp and @UpdateTimestamp

Embeddable Types

Inheritance

Create and Update Timestamps

Revision #2
Created 17 April 2022 00:48:54 by Elkip
Updated 17 April 2022 01:37:29 by Elkip


