Interface Segregation
Principle

e Interfaces are a core part of Java and are used extensively to achieve abstraction and to
support multiple inheritance of type (the ability of a class to implement more than one
interface)

e This principle states that “Clients should not be forced to depend on methods that they do
not use”. Here, the term “Clients” refers to the implementing classes of an interface.

e Basically, your interface shouldn't be bloated with methods that implementing classes
don't require

e "Fat Interfaces" implement classes that are unnecessarily forced to provide
implementations (dummy/empty) even for those methods that they don't need

e In addition, the classes are subject to change when the interface changes. An addition of a
method or change to a method signature requires modifying all the implementation
classes even if some of them don't use the method

e Break "Fat interfaces" into smaller and highly cohesive interfaces known as "role
interfaces"

o Each "role interface declares one or more methods for a speicific behavior,"

Violation (Bad) Example

Consider the requirements of an application that builds different types of toys. Each toy will have a
price and color. Some toys, such as a toy car or toy train can additionally move, while some toys,
such as a toy plane can both move and fly. An interface to define the behaviors of toys is this.

Toy.java

public interface Toy {
void setPrice(double price);
void setColor(String color);
void move();

void fly();

ToyHouse.java



public class ToyHouse implements Toy {

double price;

String color;

@Override

public void setPrice(double price) {
this.price = price;

}

@Override

public void setColor(String color) {
this.color=color;

}

@Override

public void move(){}

@Override

public void fly(){}

As you can see, it is useless to provide ToyHouse with implementations of move and fly. This also
leads to violation of the open closed principle

Following the Interface
Segregation Principle

Create interfaces for specific behaviors Toy.java
package guru.springframework.blog.interfacesegregationprinciple;
public interface Toy {

void setPrice(double price);

void setColor(String color);

Movable.java
package guru.springframework.blog.interfacesegregationprinciple;

public interface Movable {



void move();

Flyable.java

package guru.springframework.blog.interfacesegregationprinciple;

public interface Flyable {
void fly();

Now we can implement classes which only implement interfaces they are interested in.

ToyHouse.java

package guru.springframework.blog.interfacesegregationprinciple;

public class ToyHouse implements Toy {
double price;

String color;

@Override

public void setPrice(double price) {

this.price = price;
}
@Override

public void setColor(String color) {

this.color=color;

}
@Override
public String toString(){

return "ToyHouse: Toy house- Price: "+price+" Color: "+color;

ToyCar.java

package guru.springframework.blog.interfacesegregationprinciple;



public class ToyCar implements Toy, Movable {
double price;

String color;

@Override

public void setPrice(double price) {

this.price = price;

@Override
public void setColor(String color) {
this.color=color;
}
@Override
public void move(){
System.out.printIn("ToyCar: Start moving car.");
}
@Override
public String toString(){

return "ToyCar: Moveable Toy car- Price: "+price+" Color: "+color;

ToyPlane.java

package guru.springframework.blog.interfacesegregationprinciple;

public class ToyPlane implements Toy, Movable, Flyable {
double price;

String color;

@Override
public void setPrice(double price) {

this.price = price;

@Override
public void setColor(String color) {

this.color=color;



}
@Override

public void move(){

System.out.printIn("ToyPlane: Start moving plane.");
}
@Override
public void fly(){

System.out.printIn("ToyPlane: Start flying plane.");
}
@Override
public String toString(){

return "ToyPlane: Moveable and flyable toy plane- Price: "+price+" Color: "+color;

Summary of Interface Segregation
Principle

Both the Interface Segregation Principle and Single Responsibility Principle have the same goal:
ensuring small, focused, and highly cohesive software components. The difference is that Single
Responsibility Principle is concerned with classes, while Interface Segregation Principle is
concerned with interfaces.Interface Segregation Principle is easy to understand and simple to
follow. But, identifying the distinct interfaces can sometimes be a challenge as careful
considerations are required to avoid proliferation of interfaces. Therefore, while writing an
interface, consider the possibility of implementation classes having different sets of behaviors, and
if so, segregate the interface into multiple interfaces, each having a specific role.

Interface Segregation Principle in the
Spring Framework

The Interface Segregation Principle becomes especially important when doing Enterprise
Application Development with the Spring Framework.



As the size and scope of the application you're building grows, you are going to need pluggable
components. Even when just for unit testing your classes, the Interface Segregation Principle has a
role. If you're testing a class which you’ve written for dependency injection it is ideal that you write
to an interface. By designing your classes to use dependency injection against an interface, any
class implementing the specified interface can be injected into your class. In testing your classes,
you may wish to inject a mock object to fulfill the needs of your unit test. But when the class you
wrote is running in production, the Spring Framework would inject the real full featured
implementation of the interface into your class.

The Interface Segregation Principle and Dependency Injection are two very powerful concepts to
master when developing enterprise class applications using the Spring Framework.

Revision #1
Created 17 April 2022 00:53:08 by Elkip
Updated 17 April 2022 00:53:38 by Elkip



