
Spark is a fast and general engine for large-scale data processing. The user writes a Driver
Program containing the script that tells spark what to do with your data, and Spark builds a
Directed Acyclic Graph (DAG) to optimize workflow. With a massive dataset, you can process
concurrently across multiple machines.

Let's take a second to discuss the components of spark:

Spark Core - All functionalities are build on this layer (task scheduling, memory
management, fault recovery, and storage systems). Also has the API that defines Resilient
Distributed Datasets (RDDs), which we will discuss later. There are 4 modules on this
layer:

Spark Streaming - Live data streaming of data, such as log files. These APIs are
similar to RDD.
MLib - Scalable machine learning library
Spark SQL - Library for working with structured data. Supports Hive, parquet, json,
csv, etc.
GraphX - API for graphs and graph parallel execution. Clustering, classification,
traversal, searching, and path-finding is possible in the graph. We'll come back to
this much later on.

You can use Spark with many languages; primarily Python, R, Java and Scala. I like Scala because
it's functional, type-safe and JVM-friendly language. Also, since Spark is written in Scala, there is a
slight overhead on running scripts in any other language. 

Besides a knowledge of programming, a familiarity with SQL with make Spark very easy to learn.

Intro to Spark / RDDs

Apache Spark

Why Scala?

The Resilient Distributed Dataset

https://media.geeksforgeeks.org/wp-content/uploads/20200616181455/spark2.png


The RDD is the backbone of Spark Core. This is not the same as a DataFrame, that's a different
level of the API. This is a dataset made up of rows of information, that can be divided (distributed)
on to many computers for parallel processing, and Spark makes sure we can find a way to get the
data even if a node goes down during an operation (resilient).

We don't have to write the code to make sure we can handle al of the, the RDD is within the
SparkContext. The first thing the Driver Program does is start the SparkContext automatically.
And the RDD can come from any structured data stores; a database, file, in-memory object, or
anything else.

Once you have an RDD you'll probably want to transform it. There are many types of row-wise
operations, such as:

map - map an operation to each row, one-to-one
flatmap - map an operation to create new rows from each row, one-to-many
filter
distinct
sample
Set operations - union, intersection, subtract, cartesian

Since Scala is a functional language, functions are objects. Meaning, there are many functions that
also take functions. This is helpful in mapping operations to RDDs:

Finally we want the results of our RDD, to do this we can summarize the data with functions such
as:

collect - view all the raw data
count
countByValue - how many rows exist for each given unique value
take - sample the rows
top - view the top rows
reduce

Creation

Transformation

def sqaureIt(x: Int) {
	return x*x
}

rdd.map(sqaureIt)

Actions



The map function can return key-value pairs by returning a tuple, and the values in the tuple can
be other tuples or a complex object. This is not unique to Scala

And there are unique functions that can be used with key-value RDDs:

reduceByKey() - combine values by key
ex. ((x,y) => x + y)  to add them
think of x like the current row and y as the next row

groupByKey() - group keys with the same values
sortByKey() - sort by keys
keys(), values() - return rdd of keys or values
SQL style joins are also possible, but in practice Dataframes or the SQL API are usually
used for this
mapValues() / flatmapValues() - apply operation only to the values

map is a fairly straightforward concept, for each element of an RDD a transformation is applied in a
1:1 manner

Flatmap removes that 1:1 restriction. We can create many new rows for each row:

Important: You can call a transformation on an RDD but until you call an action
nothing will be executed! This is part of Spark's lazy evaluation.

Key Values RDDs

rdd.map(x => (x,1))

Map vs Flatmap

val lines = sc.textFile("words.txt")
val bigWords = lines.map(x => x.toUpperCase) // covert all words to uppercase

val lines = sc.textFile("words.txt")
val words = lines.map(x => x.split(" ")) // split words on spaces
val wordCount = words.countByValue() // count occurances of each word

Revision #8
Created 5 February 2024 23:29:09 by Elkip
Updated 9 April 2024 15:31:35 by Elkip


