
The estimation and inference from the regression model depends on several assumptions. These
assumptions need to be checked using regression diagnostics.

We divide the potential problems into three categories:

Error: �� ~ N(0, ��2I); i.e. the errors are:
Independent
Have equal variance
Are normally distributed

Model: The structure part of model E[y] = Xβ is correct
Unusual observations: Sometimes just a few observations do not fit the model but might
change the choice and fit of the model

Graphical
More flexible but harder to definitively interpret

Numerical
Narrower in scope but require no intution

Model building is often an interactive and interactive process. It is quite common to repeat the
diagnostics on a succession of models.

Recall a basic multiple linear regression model is given by:
    E[Y|X] = Xβ   and   Var(Y|X) = ��2I

The vectors of errors is �� = Y - E(Y|X) = Y - Xβ; where  ��  is unobservable random variables with:
    E(�� | X) = 0
    Var(�� | X) =  ��2I

We estimate beta with

and the fitted values Y_hat corresponding to the observed value Y are:

Where H is the hat matrix. Defined as:

Regression Diagnostics

Diagnostic Techniques

Unobservable Random Errors
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The vector of residuals e_hat, which can be graphed, is defined as:

    E(e_hat | X) = 0
    Var(e_hat | X) = ��2(I - H)
    Var(e_hat_i | X) = ��2(I - hii); where hii is the ith diagonal element of H.

Diagnostic procedures are based on the residuals which we would like to assume behave as the
unobservable errors would.

Cases with large values of hii will have small values for Var(e_hat_i | X)

The hat matrix H is n x n symmetric matrix

HX = X
(I - H)X = 0
HH = H2 = H
Cov(Y_hat, e_hat | X) = Cov(HY, (I - H)Y| X) =  ��2H(I - H) = 0

hii is also called the leverage of the ith case. As hii approaches 1, y_hat_i gets close to y_i.

We wish to check the independence, constant variance, and normality of the errors  ��. The errors
are not observable, but we can examine the residuals e_hat.

They are NOT interchangeable with the error.

The errors may have equal variance and be uncorrelated while the residuals do not. The impact of
this is usually small and diagnostics are often applied to the residuals in order to check the
assumptions on the error.

The Residuals

The Hat Matrix

Error Assumptions
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Check whether the variance in the residuals is related to some other quantity Y_hat and Xi

e_hat against Y_hat: If all is well there should be constant variance in the vertical direction
(e_hat) and the scatter should be symmetric vertically about 0 (linearity)
e_hat against Xi (for predictors that are both in and out of the model): Look for the same
things except in the case of plots against predictors not in the model, look for any
relationship that might indicate that this predictor should be included.
Although the interpretation of the plot may be ambiguous, one can be at least sure that
nothing is seriously wrong with the assumptions.

The tests and confidence intervals we used are based on the assumption of normal errors. The
residuals can be assessed for normality using a QQ plot. This compares residuals to "ideal" normal
observations.

Suppose we have a sample of n: x1, x2... xn. and wish to examine whether the x's are a sample
from normal  distribution:

Order the x's to get x(1) <= x(2).... <= x(n)
Consider a standard normal sample of size n. Let z(1) <= z(2).... <= z(n)
If x's are normal then E[x(i)] = mean + sd*z(i); so the regression of x(i) on z(i) will be a
straight line

Many statistics have been proposed for testing a sample for normality. One of these that works well
is the Shapiro and Wilk W statistic, which is the square of the correlation between the observed
order statistics and the expected order statistics.

H0 is that the residuals are normal
Only recommend this in conjunction with a QQ plot
For a small sample size, formal tests lack power
For a large dataset, even mild deviations from non-normality may be detected. But there
would be little reason to abandon least squares because the effects of non-normality are
mitigated by large sample sizes.

One helpful test looks for curvature in the plot. Suppose we have residual e_hat vs a quantity U
where U could be a regressor or a combination of regressors.

A simple test for curvature is:

Constant Variance

Normality Assumptions

Testing for Curvature



To refit the model with an additional regressor for U^2 added
The test is based on test testing the coefficient for U^2 to be 0
If U does not depend on estimated coefficients, then a usual t-test of this hypothesis can
be used
If U is equal to the fitted values (which depends on the estimated coefficients) then the
test statistic is approximately the standard normal distribution

Some observations do not fit the model well, called outliers. Some observations change the fit of
the model in a substantive manner, called influential observations. If an observation has the
potential to influence the fit, it is called a leverage point.

hii is called leverage and is useful diagnostics.

Var(e_hat_i | X) = ��2(1 - hii)
    A large leverage will make Var(e_hat_i | X) small
    The fit will be forced close to yi

 = number of parameters
    An average value for hii is p'/n
    A "rule of thumb": leverage > 2p'/n should be looked at more closely

hij = xi'(X'X)-1xj
    Leverage only depends on X, not Y

Suppose that the i-th case is suspected to be an outlier:

We exclude point i-th case is suspected to be an outlier
Recompute the estimates to get estimated coefficents and variance
If y_hat_i - y_i is large, then case i is an outlier. To judge the size of potential outlier, we
need to an appropriate scale:

The variance is estimated by replaced variance with estimated variance. at i
Assuming normal errors, the hypothesis E[y_hat_i - y_i] = 0 is given by

Define standardized residual (internal studentized residual) as

Unusual Observations

Alternative Method
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Then studentized residual (external studentized, jackknife, or cross-validated residual,
Rstudent) can be calculated as:

Even though we might explicitly test only one or two large ti by identifying them as large, we are
implicity testing all cases. So, multiple testing correction such as Bonferroni correction should be
implemented. Suppose we want a level alpha test:

So it suggests that if an overall level alpha test is required, then a level should be alpha/n in each
of the tests.

An outlier in one model may not be an outlier in another when the variables have been
changed or transformed
The error distribution may not be normal and so larger residuals may be expected
Individual outliers are usually much less of a problem in larger datasets. A single point will
not have the leverage to affect the fit very much. It is still worth identifying outliers if
these types of observations are worth knowing in the context.
For large datasets, we only need to worry about clusters of outliers. Such clusters are less
likely to occur by chance and more likely too represent actual structure.

When handling outliers:

Check for a data-entry error first
Examine the physical context, ex. the outliers in the analysis of credit card transactions
may indicate fraud
Exclude the point from the analysis but try re-including it later if the model is changed.
Always report the existence of outliers even if they are not included in the final model!

Bonferroni Correction

Notes on Outliers:

Influential Observations

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-10/image-1665098970225.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-10/image-1665099058229.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-10/image-1665099162424.png


An influential point is one whose removal from the dataset causes a large change in fit. An
influentual point may or may not be an outier or a leverage point.

Two meausures for identifying the infuential observations:

Difference in Fits (DFFITS)

An observation is influential if the absolute value is greater than:

, where p is the number of parameters (predictors + 1)

Cook's Distance

where p is the number of parameters (predictors + 1)
Di summarized how much alll of the fitted values change with the i-th observation is
deleted
A "rule of thumb" is Cook Distance > 4/n should be looked at more closely
Di = 1 will potentially have important change in estimate

Di > .5 may be influential
Di >= 1 quite likely to be influential
If Di sticks out from others it is almost certainly influential

Potential Outlier's percentile value using the F-distribution ~ F(p', n-p')
If < 10 or 20 percentile, little apparent influence
If > 50 percentile, highly influential
If in between, ambiguous

These rules are guidelines only, not a hard rule.

Code
## Test for normallity
gs <- lm(sqrt(Species) ~ Area + Elevation + Scruz + Nearest + Adjacent, gala)
g <- lm(Species ~ Area + Elevation + Scruz + Nearest + Adjacent, gala)
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par(mfrow=c(2,2))
plot(fitted(g), residuals(g), xlab="fitted", ylab="Residuals")

qqnorm(residuals(g), ylab="Residuals")
qqline(residuals(g))

hist(g$residuals)

## Testing for curvature
library(alr4)
m2 <- lm(fertility ~ log(ppgdp) + pctUrban, UN11)
residualPlots(m2)
summary(m2)$coeff

## Testing for Outliers
g <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)
n <- nrow(savings)
pprime <- 5   # number of parameters
jack <- rstudent(g)   # studentized residual
jack[which.max(abs(jack))]  # maximum studentized residual

# threshold for lower tail
qt(0.05/(50*2), df = n-pprime-1 , lower.tail=TRUE) 

#### influential points
cook <- cooks.distance(g)
n <- nrow(savings)
pprime <- 5

check <- cook[cook > 4/n]  # rule of thumb
sort(check, decreasing=TRUE) [1:5]  # list first five max

cook[cook>0.5]    # check Di>0.5
cook[(pf(cook, pprime, n-pprime)>0.5)] # use F-dist

influenceIndexPlot(g)
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