
When signing a JSON Web Token (JWT) from the server, two algorithms are supported for signing
JSON Web Tokens (JWTs): RS256 and HS256. HS256 is the default for clients and RS256 is the
default for APIs. When building applications, it is important to understand the differences between
these two algorithms. To begin, HS256 generates a symmetric MAC and RS256 generates an
asymmetric signature. Simply put HS256 must share a secret with any client or API that wants to
verify the JWT. Like any other symmetric algorithm, the same secret is used for both signing and
verifying the JWT. This means there is no way to fully guarantee Auth0 generated the JWT as any
client or API with the secret could generate a validly signed JWT. On the other hand, RS256
generates an asymmetric signature, which means a private key must be used to sign the JWT and a
different public key must be used to verify the signature. Unlike symmetric algorithms, using
RS256 offers assurances that our server is the signer of a JWT since only one party has the private
key.

At the most basic level, the JWKS is a set of keys containing the public keys that should be used to
verify any JWT issued by the authorization server. We set this up as a static endpoint on the
backend server, something like https://your-domain/api/.well-known/jwks,json To create that I
added a folder called certs/ to the base project directory and then added the following in a file
called 'jwks.json':

Signing JSON Tokens with
RSA

RS256 vs HS256

Verifying RSA256

{
"keys": [
 {
 "alg": "RS256",
 "kty": "RSA",
 "use": "sig",

alg: is the algorithm for the key
kty: is the key type
use: is how the key was meant to be used. For the example above, sig represents
signature verification.
x5c: is the x509 certificate chain
kid: is the unique identifier for the key
x5t: is the thumbprint of the x.509 cert (SHA-1 thumbprint)
parameter n: Base64 URL encoded string representing the modulus of the RSA Key.
parameter e: Base64 URL encoded string representing the public exponent of the RSA
Key.
parameter d: Base64 URL encoded string representing the private exponent of the RSA
Key.
parameter p: Base64 URL encoded string representing the secret prime factor of the RSA
Key.
parameter q: Base64 URL encoded string representing the secret prime factor of the RSA
Key.

 "x5c": [

"MIIC+DCCAeCgAwIBAgIJBIGjYW6hFpn2MA0GCSqGSIb3DQEBBQUAMCMxITAfBgNVBAMTGGN1c3RvbWVyLWRlbW
9zLmF1dGgwLmNvbTAeFw0xNjExMjIyMjIyMDVaFw0zMDA4MDEyMjIyMDVaMCMxITAfBgNVBAMTGGN1c3RvbWVyL
WRlbW9zLmF1dGgwLmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnjZc5bm/eGIHq09N9HKHa
hM7Y31P0ul+A2wwP4lSpIwFrWHzxw88/7Dwk9QMc+orGXX95R6av4GF+Es/nG3uK45ooMVMa/hYCh0Mtx3gnSuoT
avQEkLzCvSwTqVwzZ+5noukWVqJuMKNwjL77GNcPLY7Xy2/skMCT5bR8UoWaufooQvYq6SyPcRAU4BtdquZRiBT4U
5f+4pwNTxSvey7ki50yc1tG49Per/0zA4O6Tlpv8x7Red6m1bCNHt7+Z5nSl3RX/QYyAEUX1a28VcYmR41Osy+o2OU
CXYdUAphDaHo4/8rbKTJhlu8jEcc1KoMXAKjgaVZtG/v5ltx6AXY0CAwEAAaMvMC0wDAYDVR0TBAUwAwEB/zAdBgNV
HQ4EFgQUQxFG602h1cG+pnyvJoy9pGJJoCswDQYJKoZIhvcNAQEFBQADggEBAGvtCbzGNBUJPLICth3mLsX0Z4z8T8
iu4tyoiuAshP/Ry/ZBnFnXmhD8vwgMZ2lTgUWwlrvlgN+fAtYKnwFO2G3BOCFw96Nm8So9sjTda9CCZ3dhoH57F/hV
MBB0K6xhklAc0b5ZxUpCIN92v/w+xZoz1XQBHe8ZbRHaP1HpRM4M7DJk2G5cgUCyu3UBvYS41sHvzrxQ3z7vIePRA
4WF4bEkfX12gvny0RsPkrbVMXX1Rj9t6V7QXrbPYBAO+43JvDGYawxYVvLhz+BJ45x50GFQmHszfY3BR9TPK8xmM
mQwtIvLu1PMttNCs7niCYkSiUv2sc2mlq1i3IashGkkgmo="
],
 "n": "yeNlzlub94YgerT030codqEztjfU_S6X4DbDA_iVKkjAWtYfPHDzz_sPCT1Axz6isZdf3lHpq_gYX4Sz-
cbe4rjmigxUxr-FgKHQy3HeCdK6hNq9ASQvMK9LBOpXDNn7mei6RZWom4wo3CMvvsY1w8tjtfLb-yQwJPltHxShZq5-
ihC9irpLI9xEBTgG12q5lGIFPhTl_7inA1PFK97LuSLnTJzW0bj096v_TMDg7pOWm_zHtF53qbVsI0e3v5nmdKXdFf9BjIA
RRfVrbxVxiZHjU6zL6jY5QJdh1QCmENoejj_ytspMmGW7yMRxzUqgxcAqOBpVm0b-_mW3HoBdjQ",
 "e": "AQAB",
 "kid": "NjVBRjY5MDlCMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg",
 "x5t": "NjVBRjY5MDlCMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg"
 }
]}

parameter dp: Base64 URL encoded string representing the first factor CRT exponent of
the RSA Key. d mod (p-1)

parameter dq: Base64 URL encoded string representing the second factor CRT exponentof the RSA
Key. d mod (q-1)

parameter qi: Base64 URL encoded string representing the first CRT coefficient of the RSA Key. q^-1
mod p

And the I added the following routes:

I recommend the following links:

Generate JWKS Token
Change from JWKS and PEM format

1. Retrieve the JWKS and filter for potential signature verification keys.
2. Extract the JWT from the request's authorization header.
3. Decode the JWT and grab the kid property from the header.
4. Find the signature verification key in the filtered JWKS with a matching kid property.
5. Using the x5c property build a certificate which will be used to verify the JWT signature.
6. Ensure the JWT contains the expected audience, issuer, expiration, etc.

 static(".well-known") {
 staticRootFolder = File("certs")
 file("jwks.json")
 }

Steps for validating the JWT Server-side:

Revision #2
Created 17 April 2022 00:26:50 by Elkip
Updated 17 April 2022 01:02:09 by Elkip

https://mkjwk.org/
https://8gwifi.org/jwkconvertfunctions.jsp

