
The path (URL) is the route to a resource
A resource is any kind of logical object in the business model
HTTP is most often used as transport protocol

GET - retrieve data
PUT - create or update an object
POST - submit data or update an object
DELETE
HEAD - get only the header (no body)
OPTIONS - queries which methods are possible
PATCH - updates a partial resource

JSON is always the preferred data format, it's just so darn pretty
API - Application program interface
HTTPS encrypts communications between server and client
Is often made secure with basic or OAUTH2 authenication

Hypermedia is an extension of the term hypertext, it is a medium of delivering information to a
browser that could include graphics, audio, video, plaintext, and hyperlinks.

HATEOAS - Hypermedia as the Engine of Application State
Ktor does not have a standard/built-in feature that generates a HATEOAS response yet

Register (map) content converters with content types

Ktor REST API

REST - Respresentational State
Transfer

Ktor and Hypermedia

Content Negotiation

ContentNegotation feature is part of standard ktor library
Example Converters:

GSON converter - io.ktor:ktor-gson
Jackson converter - io.ktor:ktor-jackson
There is no standard XML converter, but you could define one by importing
com.fasterxml.jackson.dataformat:jackson-dataformat-xml

Use "Content-Type" header to find the correct receive converter
Use the "Accept" header to find the matching send converter

To write a custom converter implement the interface ContentConverter
Implement method convertForSend
Implement method convertForReceive

An example with the jackson XML library:

install(ContentNegotiation) {
	register(TheContentType, TheContentTypeConverter()) {
		//configure converter
	}
}

Custom Converters

interface ContentConverter {
	suspend fun convertForSend(context: PipelineContent<Any, ApplicationCall>, contentType: ContentType, value:
Any): Any?
	suspend fun convertForReceive(context: PipelineContext<ApplicationReceiveRequest, ApplicationCall>): Any?
}

class XmlConverter : ContentConverter {
 override suspend fun convertForSend(
 context: PipelineContext<Any, ApplicationCall>,
 contentType: ContentType,
 value: Any
): Any? {
 val xmlMapper = XmlMapper()
 val xml = xmlMapper.writeValueAsString(value)
 return TextContent(xml, contentType.withCharset(context.call.suitableCharset()))
 }

 override suspend fun convertForReceive(context: PipelineContext<ApplicationReceiveRequest,

And then set that in the ContentNegotiator

By setting up both json and xml we can set the perfered response type in the header: curl -H
"Accept: application/json" "http://localhost:8080/spaceship" curl -H "Accept: application/xml"
"http://localhost:8080/spaceship"

We can enable serialization features in both Gson and Jackson to configure the output.
There are many serialization features, I will not list them all here, explore thhe class
SerializationFeature for details.
The main difference between GSON and Jackson is which serialization features are
enabled by default. Ex:

Jackson prints out null values by default.
Jackson does not enable support for java.time.* by default, one must add the
seperate dependency and register the module

ApplicationCall>): Any? {
 val request = context.subject
 val channel = request.value as? ByteReadChannel ?: return null
 val reader = channel.toInputStream().reader(context.call.request.contentCharset() ?: Charsets.UTF_8)
 val type = request.typeInfo
 val xmlMapper = XmlMapper()
 val xml = reader
 val result: Any? = xmlMapper.readValue(xml, type.javaClass)
 return result
 }
}

 // If nothing is specified in the header the request will use XML
 install(ContentNegotiation) {
 gson {
 }
 register(ContentType.Application.Xml, XmlConverter())
 }

Serialization

 install(ContentNegotiation) {
 // If this line is active the request will use XML, unless the header specifies otherwise
 //register(ContentType.Application.Xml, XmlConverter())

Annotations can be used to determine how a single field should behave
@JsonProperty - Set configuration to a single field
@JsonFormat - To determine the datetime format of a single field
@JsonInclude - Set if null values should be included

The raw body data is collected from the request object

Form Parameters can be extracted with the function call.recieveParameters
Cookies sent in the header from the client can be accessed with val cookies: RequestCookies
= call.request.cookies or can be accessed individually with val specificCookie: String? =
request.cookies["specificCookie"]

Multiparts are good for files uploads

In a route, we can get the path variables with call.parameters.get(...)

 jackson {
 registerModule(JavaTimeModule())
 enable(SerializationFeature.INDENT_OUTPUT)
 enable(SerializationFeature.WRITE_SINGLE_ELEM_ARRAYS_UNWRAPPED)
 }
 }

How Data Is Posted to the Route
Endpoint

val channel: ByteReadChannel = call.receiveChannel()
val text: String = call.receiveText()
// receiveStream() is synchronous and blocks the thread
val inputStream: InputStream = call.receiveStream()
val multipart: MultiPartData = call.receiveMultipart()

val multipart = call.receiveMultipart()
multipart.forEachPart { ..}

Routes with Path Variables

https://ktor.io/servers/uploads.html

The Locations feature maps the variables from a class definition. As of right now it is still
an experimental feature, it has been for a while
Requires implementing "io.ktor:ktor-locations:$ktor_version" and then install(Locations) {}
The path variables are mapped by creating a class and annotation it with
@Location("/myLocation/{mypathvar}")
Variables are in { } and it needs to match an argument in the primary constructor
Then the route needs to be mapped using generics with the class we annotated with
Location

Nested Routes can be created with nested inner classes

Request or query parameters are most often used to describe paging and sorting when
dealing with many rows of data
It is the extra parameter after the "?" in a URL
https://localhost:8080/book/list?sortby=author&asc=1
Multiple request parameters are separated with the "&" -sign
Key and value are separated with the "=" sign
We can use Locations to map request parameters to class fields. This is done by adding
extra constructor arguments: @Location("/listbooks") data class List(val sortBy: String, val asc: Int)
A call to the following might look like:
http://localhost:8080/article/flowers/list?sortBy=author,releasedate&asc=1
These arguments can be anything as long as they do not match path variables
All request parameters are optional.

get<MyLocation> {
	call.respondText("${it.mypathvar}")
}

Nested Routes

@Location("/book/{category}")
data class Book(val category: String) {
	@Location("/{author}")
	data class Author(val book: Book, val author: String)
	
	@Location("/list")
	data class List(val book: Book)
}

Routes with Request Parameters

The request can be accessed on the call, when we are setting up the routes with
call.request, using the following: val headerValue: String? =
call.request.headers.get("MyHeaderName")
Mutiple values for a header key can be accessed with: val multipleValues: List<String>? =
request.headers.getAll("MyHeaderWithMultipleValues")
Convienience functions can access standard headers on a request.

The response can be accessed on the call object when we are setting up the routes with
call.response call.response.header("HeaderName", "HeaderValue")
HttpHeaders contain the most common HttpHeaders
call.response.header(HttpHeaders.SetCookie, "CookieValue")
There is a DefaultHeaders feature available for installation

Error handling can be done by importing StatusPages. The install function has three main
configuration options:

Exceptions: Create responses based on exception classes
Satus: Create responses based on status code value
statusFile: Use html file from classpath as response

Working with Headers
Retrieve Headers from Request

Setting Headers on a Response

install(DefaultHeaders) {
	header("SystemName", "BookStore")
}

Error Handling and
Authentication

To prevent recursive stack calls when the same exception is thrown multiple times, each
call is only caught by one handler
It is also possible to redirect the client in the exception handler. That might look
something like this:

We can also return details from the HTTP repsonse:

And the StatusFile return:

install(StatusPages) {
	exception<MyCustomException> { cause ->
		call.respond(HttpStatusCode.InternalServerError, "Whoops a Cusom Error Occurred")
		throw cause
	}
}

install(StatusPages) {
	exception<HttpRedirectException> { e ->
		call.respondRedirect(e.location, permanent = e.permanent)
	}
}

class HttpRedirectException(val location: String, val permanent: Boolean = false): RuntimeException()

install(StatusPages) {
	status(HttpStatusCode.NotFound) {
		call.respond(TextContent("${it.value} ${it.description}",
		ContentType.Text.Plain.withCharsets(Charsets.UTF_8), it))
	}
}

install(StatusPages) {
	statusFile(HttpStatusCode.NotFound, HttpStatusCode.Unauthorized, FilePattern = "my-custom-error#.html")
}
// The # above will be filled with the error code number

Authentication Concepts

Authentication - proves the person or system is who they claim
Authorization - the right to perform an action
Principle - System or person to be authenticated
Credentials - Username and password or API key that can be used to prove the identity of
a principle
Realm - Used to give more information in an unauthorized response

Basic - Supply base64 encoded username and password in header
Form - Username and password sent as form data
HTTP Digest - MD5 encrypt username and password
JWT and JWK - JSON Web Tokens
LDAP within basic Authentication
OAuth 1a and 2.0
We can check credentials against values in database or against a constant in the validate
function. If it's successful we return a UserIdPrinciple.
It is reccomended to create a table with usernames and hashed passwords

Supported Authentication Methods

 install(Authentication) {
 basic("myAuth1") {
 realm = " My Realm"
 validate {
 if (it.name == "mike" && it.password == "password")
 UserIdPrincipal(it.name)
 else null
 }
 }
 basic("myAuth2") {
 realm = "MyOtherRealm"
 validate {
 if(it.password == "${it.name}abc123")
 UserIdPrincipal(it.name)
 else
 null
 }
 }
 }
	
	routing {

An incoming request and outgoing response is called an ApplicationCall
An ApplicationCall is passed through an ApplicationCallPipeline which consists of a number
of interceptors, or it may not have any
Interceptors are invoked one at a time
An interceptor can choose to let the next interceptor continue with the ApplicationCall
An interceptor can choose to finish the ApplicationCall and no more interceptors will
receive the call
The ApplicationCallPipeline consists of phases: 1. Setup 2. Monitoring 3. Features 4. Call 5.
Fallback
An interceptor registers to a specific phase
Code can be run before and after a pipeline

 authenticate("myAuth1") {
 get("/secret/weather") {
 val principal = call.principal<UserIdPrincipal>()!!
 call.respondText("Hello ${principal.name} it is secretly going to rain today")
 }
 }

 authenticate("myAuth2") {
 get("/secret/color") {
 val principal = call.principal<UserIdPrincipal>()!!
 call.respondText("Hello ${principal.name}, green is going to be popular tomorrow")
 }
 }
}

Routing Interceptors - Check
Admin Rights

	// creating a new interceptor to be called after the call
 val mike = PipelinePhase("Mike")
	// This would not work if it was insertPhaseAfter, as the route would have already provided a response
 insertPhaseBefore(ApplicationCallPipeline.Call, mike)
	
 intercept(ApplicationCallPipeline.Setup) {
 log.info("Setup phase")
 }

 intercept(ApplicationCallPipeline.Call) {
 log.info("Call phase")
 }
 intercept(ApplicationCallPipeline.Features) {
 log.info("Features phase")
 }
 intercept(ApplicationCallPipeline.Monitoring) {
 log.info("Monitoring phase")
 }

 intercept(mike) {
 log.info("Mike Phase${call.request.uri}")
 if (call.request.uri.contains("mike")) {
 log.info("The uri contains mike")
			call.respondText("The Endpoint contains mike")
			// finish means the remaining interceptors will not be called
 finish()
 }
 }

 routing {

 get("/something/mike/something") {
 call.respondText("Endpoint handled by route.")
 }
 }

Revision #1
Created 17 April 2022 00:22:01 by Elkip
Updated 17 April 2022 01:02:09 by Elkip

