
Ktor is a Kotlin based asynchronous web framework.

Backends need to be versatile and scalable. Developers should have a 'microservice mindset' to
create more maintainable backend services.

Kotlin based - concise and fun language to use
Lightweight - low server start up time
Asyncronous through co-routines - does NOT create a thread per request/response -
scalable
Runs on JVM and uses Gradle - runs on basic infrastructure (i.e. a docker container)
Well documented and Easy to use (At least compared to Ruby and PHP). Jetbrains always
does a good job with their documentation.
Modular - default project starts with one module
Rich in features - autentication, data access, content negotiation, & more
Flexible - currently supports 4 different servlet containers: Tomcat, Netty, Jetty, and CIO
In development since 2015 and is well-maintained

Web Container / Servlet Container / Servlet Engine : is used to manage the components
like Servlets, JSP. It is a part of the web server.
Web Server / HTTP Server: A server which is capable of handling HTTP requests, sent by a
client and respond back with a HTTP response.
Application Server / App Server: can handle all application operations between users and
an organization's back end business applications or databases.It is frequently viewed as
part of a three-tier application with: Presentation tier, logic tier,Data tier

Ktor Basics

Why Ktor

What is a Servlet Container?

Which to Choose?

Tomcat

http://tomcat.apache.org/

The most popular open source project under Apache
Very well documented
JSP parsing is very fast
Flexible and scales easy
Spring Boot uses Tomcat by default

Uses less memory and is more lightweight thus offering speed and scalabillity
Small and efficent with low maintaince costs
Can server as a asyncronous server with some effort
Open source with good community and support. Originated from the Eclipse foundation
Widely used, though less so than Tomcat
Built into several frameworks; GWT, JRuby, Grails, Scala/Lift & more
If you want a light HTTP servlet container use Jetty.

An asynchronous, event-driven, non-blocking I/O, network application framework.
You can write your own servlet container, but technically Netty in itself is a server
framwork not a container like Jetty
Greatly simplifies network programming such as TCP and UDP socker servers.
If you deal a lot with network protocols and want it to be non-blocking use Netty (usually
for high-performance cases).

Stands for Configuration Interface Object
Made by Oracle. Very poorly documented in my opinion. can't find any example usages for
Java Servlets outside the documentation.
The benifit of this one is is runs on Android and JVM
I think Ktor support for CIO is still flakey as well. I would avoid this one.

For Ktor the buzzword is asynchronous, and I plan on experimenting with socket programming, so
my choice is Netty.

Note: I think there is also support for Apache and Android as a buit in http client engine but the
documentation doesn't go into great detail

Jetty

Netty

CIO

https://ktor.io/docs/http-client-engines.html#desktop
http://www.eclipse.org/jetty/
https://netty.io/
https://docs.oracle.com/cd/E18727_01/doc.121/e14321/T454386BCFHIIBB.htm

Either go to start.ktor.io or use the Intellij plugin to generate a project template. Select whatever
add-ons you want but always make sure 'routing' is selected

Other add-ons I would concider basic:

Status Pages - Allow the server to respond to thrown exceptions
CallLogging - Logs Client Requests
CSS/HTML DSL - You'll need these if you plan on hosting your html directly off ktor.
PartialContent - Adds support for breaking up content and using paging
Authentication Basic - Good starting point for security if you don't feel like setting up ldap
ContentNegotation - Automatic type conversion
GSON - Helper library for handling JSON data

The Kotin corourine is an asynchronous non-blocking job that can run on the same thread as other
coroutines.

Coroutine is acheived in Ktor using the kotlinx.coroutines libraray
Runs in a context - many coroutines can share context and thread pool
Ktor uses coroutines through the framework, which is why it preforms so well.
A coroutine function is decorated with "suspend"
Other suspend functions can only be run from suspend functions
A coroutine is usually start with the launch function in the DEFAULT context
A coroutine can be tested or run by the main function by using the runBlocking function

Most features require a Gradle/Maven dependecy
use the install function. Configure it with a trailing Lambda as an argument.

Starting a Project

The Kotlin Coroutine

Installation and
Configuration of Features

A common feature has one or more helper functions
Routing is a common feature
For a feature with helper functions, we can configure this feature after calling it's install
function
For example:

can be seperated into install(Routing) and

Although, this is a bad example, because Routing is installed by default so there's no need for
install(Routing)

 install(CallLogging) {
 level = Level.INFO
 filter { call -> call.request.path().startsWith("/") }
 }
	install(Routing) {
		get("/") {
			call.respondText("Good evening World")
		}
	}

Common Features

install(Routing) {
	get("/") {
		call.respondText("Good evening World")
	}
}

routing {
	get("/") {
		call.respondText("Good evening World")
	}
}

Custom Features

You can build and install your own custom features. Most features intercept the pipeline at the
Application.Features phase. That's all I'm going to say about that.

Detects changes on the classpath, meaning changes are made without having to restart
the server. Very handy when making HTML changes
Autoreload is an experimental feature only available with JDK8+. It can be enabled with
Intellij or within the Gradle buiild
Of course there is a cost to preformance. Do not use this feature in production or while
benchmarking
application.conf

Chose folders to watch for classpath changes: watch = [/module1, /module2]
Usually we only deal with one module, so an example conf would be something like:

tor {
deployment {
port = 8080
port = ${?PORT}
watch = [/]
}
	application {
		modules = [cpm.exmple.ApplicationKt.module]
	}

``

Gradle can recompile the project on code changes: gradle -t installDist
This compiles and listens for source code changes
Using Gradle gives the most flexible autoreload setup, but requires JDK8+

Autoreload

Gradle: Recompile

Enables us to choose specific routes for which we want to enable logging. You can have as
many filters as you would like.

There is a feature called DropwizardMetrics that monitors performance statistics like:
Number of threads
Number of Calls per endpoint
Memory Usage
And more...

It can be configured to log statistics to a file or other places like JMX
JXM Reporter allows us to expose metrics to the JMX so we can use the JConsole or
jvisualvm to view metrics
Slf4j Reporter outputs the metrics in the log every X seconds
The following dependencies must be implemented:

Then install the feature:

Call Logging - Log All
Incoming Requests

install(CallLogging) {
	level = Level.INFO
	filter { call -> call.request.path().startsWith("/mysection1") }
}

Metrics Statistics on the
Usage of Endpoints

 implementation("io.ktor:ktor-metrics:$ktor_version")
 implementation("io.dropwizard.metrics:metrics-jmx:4.0.0")

 install(DropwizardMetrics) {
 Slf4jReporter.forRegistry(registry)
 .outputTo(log)
 .convertRatesTo(TimeUnit.SECONDS)

This information is very useful for debugging performance
Run jconsole in the termnial and select the running process to see visualizatons on
performance 3ffb8c0b3893bc3cc5d520cca391670b.png

 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build()
 .start(15, TimeUnit.SECONDS)

 JmxReporter.forRegistry(registry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build()
 .start()
 }

Revision #1
Created 16 April 2022 23:57:49 by Elkip
Updated 17 April 2022 01:02:09 by Elkip

