
a75ce66dd598d66738b87023e85a44b7.png

EngineMain Class
Used to run the application
Loads application.conf file
Supported Engines:

CIO: io.ktor.server.cio.EngineMain.main
Jetty: io.ktor.server.jetty.EngineMain.main
Netty: io.ktor.server.netty.EngineMain.main
Tomcat: io.ktor.server.tomcat.EngineMain.main

ApplicationEngine
In charge of running the application
Uses the configuration to decide which ports to listen to

ApplicationEngineEnvironment
Immutable
Contains a Classloader, Configuration, Logger, Monitor (event bus for a port and
application information that can be subscribed to), Connectors, Monitor, and
installed Modules

ApplicationCallPipeline - Contains application phases which can be intercepted
Contains a context: ApplicationCall class

This class has a reference to the application, the request, the response, the
attributes, and parameters
Phases:

Setup: Prepares the call and processes and attributes
Monitoring: Logging metrics and error handling
Features: Infrasructure features - most features intercept at this phase
Call: Processes a call and sends a response
Fallback: Handles unprocessed calls

Monitor (Event Bus):
Raises application events
Enables us to subscribe to the following events:

ApplicationStarting
ApplicationStarted
ApplicationStopPreparing
ApplicationStopping

Ktor Architecture & Lifecycle

Architecture

ApplicationStopped
In between these events a database could be cleaned or emails could be sent,
for ex

Routing is a built in feature that helps us structure the page request handling
Information about the request is extracted like the header and request parameters
Routes are matched up against the extracted information and the route configuration
Route functions:

route(HttpMethod.Get, path) { do something.. }
Shortcut functions: get, post, put, delete, head, and options
Use trailing lambdas to create the response

Routing tree enables us to setup complex nested routes
Builder functions can be combined and nested
We can trace why a certain route was chosen with the trace function trace {
application.log.trace(it.buildText()) }
Path segments

Optional: /greeting/{myParamId?} - If the path segment exists the paramater
myParamId will be set to the value
Wildcard: /weather/*/asia - Mathes a path starting with weather and ending with asia
Tailcard: /weather/{myParamId...} - myParamId will be set to the rest of the URL. Can
also be used without the parameter (/weather/{...})

If there are multiple path matches the route of "highest qaulity" will be chosen
If the header has an "Accepts"-key to perfer a type of content:

route(path) - segments are on the path and context is within the lambda, which could
contain more routes
method(verb) - segments on HTTP method
param(name, value) - segments on query parameter
param(name) - segments on query parameter key
optionalParam(name) - segments a query parameter if it exists
header(name, value) - segments on header content Example:

Ktor Routes

accept(ContextType.Text.Plain) { ... }
accept(ContextType.Text.Html) { ... }
accept(ContextType.Application.Json) { ... }

Builder Functions

Sample Request: curl -H "systemtoken: weathersystem" -X GET "localhost:8080/weather/asia"

 routing {
		
 route("/weather") {
 route("/asia") {
 // this will only execute if the specified systemtoken is present
 header("systemtoken", "weathersystem") {
 handle {
 call.respondText("The weather is sunny")
 }
 }
 }
 route("/europe", HttpMethod.Get) {
 // if the parameter name is not present call the other handle function
 param("name") {
 handle {
 var name = call.parameters.get("name")
 call.respondText("The weather is $name")
 }
 }
 handle {
 call.respondText("The weather is rainy")
 }
 }
 route("/usa") {
 get {
 call.respondText("The weather is rainy")
 }
 }
 }
	}

Calling 3rd Party REST
Services

The HttpClient can be installed with different types of engines
We can configure the HttpClient to deserialize a JSON response to an instance of a class
with Gson or Jackson
Ex using Apache:

Supported Engines:
Apache - "io.ktor:ktor-client-apache:$ktor_version"

Supports HTTP/1.1 and 2
CIO - "io.ktor:ktor-client-cio:$ktor_version"

Supports HTTP/1.x
Jetty - "io.ktor:ktor-client-jetty:$ktor_version"

Supports HTTP/2
If no engine is speicified, the default engine will be used (if any availble)
When running in JVM, a ServiceLoader will look for an engine on the classpath and choose
by sorting in alphabetical order
On native systems (IOS, Android) an engine will be found by static linkage

The MockEngine can be used to choose a static response for a given URL, great for Unit
Testing

val client = HttpClient(Apache) {
	install(JsonFeature) {
		serializer = GsonSerializer()
	}
}

Testing with the MockEngine

val client = HttpClient(MockEngine)
{
	engine {
		addHandler { request ->
			when (request.url.fullUrl) {
				"https://example.org/" -> {
					val responseHeaders = headersOf("Content-Type" to lostOf(ContentType.Text.Plain.toString()))
					respond("Hello, world", headers = responseHeaders)
				}
				else -> error("Unhandled ${request.url.fullUrl}")
			}
		}
	}
}

Revision #1
Created 17 April 2022 00:03:34 by Elkip
Updated 17 April 2022 01:02:09 by Elkip

