
Ktor is a Kotlin-specific framework for building asynchronous client- and server-side web
applications.

Ktor Basics
Ktor Architecture & Lifecycle
Kotlin Basics
Ktor REST API
Ktor Authentication and Authorization
Signing JSON Tokens with RSA

Ktor

Ktor is a Kotlin based asynchronous web framework.

Backends need to be versatile and scalable. Developers should have a 'microservice mindset' to
create more maintainable backend services.

Kotlin based - concise and fun language to use
Lightweight - low server start up time
Asyncronous through co-routines - does NOT create a thread per request/response -
scalable
Runs on JVM and uses Gradle - runs on basic infrastructure (i.e. a docker container)
Well documented and Easy to use (At least compared to Ruby and PHP). Jetbrains always
does a good job with their documentation.
Modular - default project starts with one module
Rich in features - autentication, data access, content negotiation, & more
Flexible - currently supports 4 different servlet containers: Tomcat, Netty, Jetty, and CIO
In development since 2015 and is well-maintained

Web Container / Servlet Container / Servlet Engine : is used to manage the components
like Servlets, JSP. It is a part of the web server.
Web Server / HTTP Server: A server which is capable of handling HTTP requests, sent by a
client and respond back with a HTTP response.
Application Server / App Server: can handle all application operations between users and
an organization's back end business applications or databases.It is frequently viewed as
part of a three-tier application with: Presentation tier, logic tier,Data tier

Ktor Basics

Why Ktor

What is a Servlet Container?

Which to Choose?

Tomcat

http://tomcat.apache.org/

The most popular open source project under Apache
Very well documented
JSP parsing is very fast
Flexible and scales easy
Spring Boot uses Tomcat by default

Uses less memory and is more lightweight thus offering speed and scalabillity
Small and efficent with low maintaince costs
Can server as a asyncronous server with some effort
Open source with good community and support. Originated from the Eclipse foundation
Widely used, though less so than Tomcat
Built into several frameworks; GWT, JRuby, Grails, Scala/Lift & more
If you want a light HTTP servlet container use Jetty.

An asynchronous, event-driven, non-blocking I/O, network application framework.
You can write your own servlet container, but technically Netty in itself is a server
framwork not a container like Jetty
Greatly simplifies network programming such as TCP and UDP socker servers.
If you deal a lot with network protocols and want it to be non-blocking use Netty (usually
for high-performance cases).

Stands for Configuration Interface Object
Made by Oracle. Very poorly documented in my opinion. can't find any example usages for
Java Servlets outside the documentation.
The benifit of this one is is runs on Android and JVM
I think Ktor support for CIO is still flakey as well. I would avoid this one.

For Ktor the buzzword is asynchronous, and I plan on experimenting with socket programming, so
my choice is Netty.

Note: I think there is also support for Apache and Android as a buit in http client engine but the
documentation doesn't go into great detail

Jetty

Netty

CIO

https://ktor.io/docs/http-client-engines.html#desktop
http://www.eclipse.org/jetty/
https://netty.io/
https://docs.oracle.com/cd/E18727_01/doc.121/e14321/T454386BCFHIIBB.htm

Either go to start.ktor.io or use the Intellij plugin to generate a project template. Select whatever
add-ons you want but always make sure 'routing' is selected

Other add-ons I would concider basic:

Status Pages - Allow the server to respond to thrown exceptions
CallLogging - Logs Client Requests
CSS/HTML DSL - You'll need these if you plan on hosting your html directly off ktor.
PartialContent - Adds support for breaking up content and using paging
Authentication Basic - Good starting point for security if you don't feel like setting up ldap
ContentNegotation - Automatic type conversion
GSON - Helper library for handling JSON data

The Kotin corourine is an asynchronous non-blocking job that can run on the same thread as other
coroutines.

Coroutine is acheived in Ktor using the kotlinx.coroutines libraray
Runs in a context - many coroutines can share context and thread pool
Ktor uses coroutines through the framework, which is why it preforms so well.
A coroutine function is decorated with "suspend"
Other suspend functions can only be run from suspend functions
A coroutine is usually start with the launch function in the DEFAULT context
A coroutine can be tested or run by the main function by using the runBlocking function

Most features require a Gradle/Maven dependecy
use the install function. Configure it with a trailing Lambda as an argument.

Starting a Project

The Kotlin Coroutine

Installation and
Configuration of Features

A common feature has one or more helper functions
Routing is a common feature
For a feature with helper functions, we can configure this feature after calling it's install
function
For example:

can be seperated into install(Routing) and

Although, this is a bad example, because Routing is installed by default so there's no need for
install(Routing)

 install(CallLogging) {
 level = Level.INFO
 filter { call -> call.request.path().startsWith("/") }
 }
	install(Routing) {
		get("/") {
			call.respondText("Good evening World")
		}
	}

Common Features

install(Routing) {
	get("/") {
		call.respondText("Good evening World")
	}
}

routing {
	get("/") {
		call.respondText("Good evening World")
	}
}

Custom Features

You can build and install your own custom features. Most features intercept the pipeline at the
Application.Features phase. That's all I'm going to say about that.

Detects changes on the classpath, meaning changes are made without having to restart
the server. Very handy when making HTML changes
Autoreload is an experimental feature only available with JDK8+. It can be enabled with
Intellij or within the Gradle buiild
Of course there is a cost to preformance. Do not use this feature in production or while
benchmarking
application.conf

Chose folders to watch for classpath changes: watch = [/module1, /module2]
Usually we only deal with one module, so an example conf would be something like:

tor {
deployment {
port = 8080
port = ${?PORT}
watch = [/]
}
	application {
		modules = [cpm.exmple.ApplicationKt.module]
	}

``

Gradle can recompile the project on code changes: gradle -t installDist
This compiles and listens for source code changes
Using Gradle gives the most flexible autoreload setup, but requires JDK8+

Autoreload

Gradle: Recompile

Enables us to choose specific routes for which we want to enable logging. You can have as
many filters as you would like.

There is a feature called DropwizardMetrics that monitors performance statistics like:
Number of threads
Number of Calls per endpoint
Memory Usage
And more...

It can be configured to log statistics to a file or other places like JMX
JXM Reporter allows us to expose metrics to the JMX so we can use the JConsole or
jvisualvm to view metrics
Slf4j Reporter outputs the metrics in the log every X seconds
The following dependencies must be implemented:

Then install the feature:

Call Logging - Log All
Incoming Requests

install(CallLogging) {
	level = Level.INFO
	filter { call -> call.request.path().startsWith("/mysection1") }
}

Metrics Statistics on the
Usage of Endpoints

 implementation("io.ktor:ktor-metrics:$ktor_version")
 implementation("io.dropwizard.metrics:metrics-jmx:4.0.0")

 install(DropwizardMetrics) {
 Slf4jReporter.forRegistry(registry)
 .outputTo(log)
 .convertRatesTo(TimeUnit.SECONDS)

This information is very useful for debugging performance
Run jconsole in the termnial and select the running process to see visualizatons on
performance 3ffb8c0b3893bc3cc5d520cca391670b.png

 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build()
 .start(15, TimeUnit.SECONDS)

 JmxReporter.forRegistry(registry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build()
 .start()
 }

a75ce66dd598d66738b87023e85a44b7.png

EngineMain Class
Used to run the application
Loads application.conf file
Supported Engines:

CIO: io.ktor.server.cio.EngineMain.main
Jetty: io.ktor.server.jetty.EngineMain.main
Netty: io.ktor.server.netty.EngineMain.main
Tomcat: io.ktor.server.tomcat.EngineMain.main

ApplicationEngine
In charge of running the application
Uses the configuration to decide which ports to listen to

ApplicationEngineEnvironment
Immutable
Contains a Classloader, Configuration, Logger, Monitor (event bus for a port and
application information that can be subscribed to), Connectors, Monitor, and
installed Modules

ApplicationCallPipeline - Contains application phases which can be intercepted
Contains a context: ApplicationCall class

This class has a reference to the application, the request, the response, the
attributes, and parameters
Phases:

Setup: Prepares the call and processes and attributes
Monitoring: Logging metrics and error handling
Features: Infrasructure features - most features intercept at this phase
Call: Processes a call and sends a response
Fallback: Handles unprocessed calls

Monitor (Event Bus):
Raises application events
Enables us to subscribe to the following events:

ApplicationStarting
ApplicationStarted
ApplicationStopPreparing
ApplicationStopping
ApplicationStopped

Ktor Architecture & Lifecycle
Architecture

In between these events a database could be cleaned or emails could be sent,
for ex

Routing is a built in feature that helps us structure the page request handling
Information about the request is extracted like the header and request parameters
Routes are matched up against the extracted information and the route configuration
Route functions:

route(HttpMethod.Get, path) { do something.. }
Shortcut functions: get, post, put, delete, head, and options
Use trailing lambdas to create the response

Routing tree enables us to setup complex nested routes
Builder functions can be combined and nested
We can trace why a certain route was chosen with the trace function trace {
application.log.trace(it.buildText()) }
Path segments

Optional: /greeting/{myParamId?} - If the path segment exists the paramater
myParamId will be set to the value
Wildcard: /weather/*/asia - Mathes a path starting with weather and ending with asia
Tailcard: /weather/{myParamId...} - myParamId will be set to the rest of the URL. Can
also be used without the parameter (/weather/{...})

If there are multiple path matches the route of "highest qaulity" will be chosen
If the header has an "Accepts"-key to perfer a type of content:

route(path) - segments are on the path and context is within the lambda, which could
contain more routes
method(verb) - segments on HTTP method
param(name, value) - segments on query parameter
param(name) - segments on query parameter key
optionalParam(name) - segments a query parameter if it exists
header(name, value) - segments on header content Example:

Ktor Routes

accept(ContextType.Text.Plain) { ... }
accept(ContextType.Text.Html) { ... }
accept(ContextType.Application.Json) { ... }

Builder Functions

Sample Request: curl -H "systemtoken: weathersystem" -X GET "localhost:8080/weather/asia"

 routing {
		
 route("/weather") {
 route("/asia") {
 // this will only execute if the specified systemtoken is present
 header("systemtoken", "weathersystem") {
 handle {
 call.respondText("The weather is sunny")
 }
 }
 }
 route("/europe", HttpMethod.Get) {
 // if the parameter name is not present call the other handle function
 param("name") {
 handle {
 var name = call.parameters.get("name")
 call.respondText("The weather is $name")
 }
 }
 handle {
 call.respondText("The weather is rainy")
 }
 }
 route("/usa") {
 get {
 call.respondText("The weather is rainy")
 }
 }
 }
	}

Calling 3rd Party REST
Services

The HttpClient can be installed with different types of engines
We can configure the HttpClient to deserialize a JSON response to an instance of a class
with Gson or Jackson
Ex using Apache:

Supported Engines:
Apache - "io.ktor:ktor-client-apache:$ktor_version"

Supports HTTP/1.1 and 2
CIO - "io.ktor:ktor-client-cio:$ktor_version"

Supports HTTP/1.x
Jetty - "io.ktor:ktor-client-jetty:$ktor_version"

Supports HTTP/2
If no engine is speicified, the default engine will be used (if any availble)
When running in JVM, a ServiceLoader will look for an engine on the classpath and choose
by sorting in alphabetical order
On native systems (IOS, Android) an engine will be found by static linkage

The MockEngine can be used to choose a static response for a given URL, great for Unit
Testing

val client = HttpClient(Apache) {
	install(JsonFeature) {
		serializer = GsonSerializer()
	}
}

Testing with the MockEngine

val client = HttpClient(MockEngine)
{
	engine {
		addHandler { request ->
			when (request.url.fullUrl) {
				"https://example.org/" -> {
					val responseHeaders = headersOf("Content-Type" to lostOf(ContentType.Text.Plain.toString()))
					respond("Hello, world", headers = responseHeaders)
				}
				else -> error("Unhandled ${request.url.fullUrl}")
			}
		}
	}

}

Extends the functionality of an existing class

Does not actaully change the code of the class
Provides a function that can be called on instances of the class

To seperate business specific routes and logic from the rest of the routes

DEFAULT: Number of threads = number of CPI cores - use this for calculations or if you are
uncertain about which context to use
IO: Number of threads = 64 or number of cores (whichever is larger) - use this for rest
communication or storing data to a file or database
MAIN: Number of threads = 1 - is mainly used in android apps to interact with user
interface

Kotlin Basics
Kotlin Class Extensions

fun Int.addFive() : Int {
 return this + 5
}

When are Class Extensions Useful in Ktor?

Coroutine Contexts

Sample Code:
import kotlinx.coroutines.*
import kotlin.random.Random

fun main(args: Array<String>) = runBlocking {
 // 64 Threads in IO
 withContext(Dispatchers.IO) {

Running this code gives an output something like:

Notice how the sequence falls out of order? This is threading and Kotlin coroutines in action.

 repeat (100_000) { // 100_000 = 100,000
 launch {
 firstcoroutine(it) // 'it' will be the current iteration
 }
 }
 println("End of withContext")
 }
 println("End of main function")
}

suspend fun firstcoroutine(id: Int) {
 delay(Random.nextLong()%2000) // The delay is a random number less than 2 seconds
 println("first $id")
}

first 0
first 1
first 2
first 5
first 6
first 7
first 8
first 10
first 9
first 11
first 13
...

The path (URL) is the route to a resource
A resource is any kind of logical object in the business model
HTTP is most often used as transport protocol

GET - retrieve data
PUT - create or update an object
POST - submit data or update an object
DELETE
HEAD - get only the header (no body)
OPTIONS - queries which methods are possible
PATCH - updates a partial resource

JSON is always the preferred data format, it's just so darn pretty
API - Application program interface
HTTPS encrypts communications between server and client
Is often made secure with basic or OAUTH2 authenication

Hypermedia is an extension of the term hypertext, it is a medium of delivering information to a
browser that could include graphics, audio, video, plaintext, and hyperlinks.

HATEOAS - Hypermedia as the Engine of Application State
Ktor does not have a standard/built-in feature that generates a HATEOAS response yet

Register (map) content converters with content types

Ktor REST API
REST - Respresentational State
Transfer

Ktor and Hypermedia

Content Negotiation

ContentNegotation feature is part of standard ktor library
Example Converters:

GSON converter - io.ktor:ktor-gson
Jackson converter - io.ktor:ktor-jackson
There is no standard XML converter, but you could define one by importing
com.fasterxml.jackson.dataformat:jackson-dataformat-xml

Use "Content-Type" header to find the correct receive converter
Use the "Accept" header to find the matching send converter

To write a custom converter implement the interface ContentConverter
Implement method convertForSend
Implement method convertForReceive

An example with the jackson XML library:

install(ContentNegotiation) {
	register(TheContentType, TheContentTypeConverter()) {
		//configure converter
	}
}

Custom Converters

interface ContentConverter {
	suspend fun convertForSend(context: PipelineContent<Any, ApplicationCall>, contentType: ContentType, value:
Any): Any?
	suspend fun convertForReceive(context: PipelineContext<ApplicationReceiveRequest, ApplicationCall>): Any?
}

class XmlConverter : ContentConverter {
 override suspend fun convertForSend(
 context: PipelineContext<Any, ApplicationCall>,
 contentType: ContentType,
 value: Any
): Any? {
 val xmlMapper = XmlMapper()
 val xml = xmlMapper.writeValueAsString(value)
 return TextContent(xml, contentType.withCharset(context.call.suitableCharset()))
 }

 override suspend fun convertForReceive(context: PipelineContext<ApplicationReceiveRequest,

And then set that in the ContentNegotiator

By setting up both json and xml we can set the perfered response type in the header: curl -H
"Accept: application/json" "http://localhost:8080/spaceship" curl -H "Accept: application/xml"
"http://localhost:8080/spaceship"

We can enable serialization features in both Gson and Jackson to configure the output.
There are many serialization features, I will not list them all here, explore thhe class
SerializationFeature for details.
The main difference between GSON and Jackson is which serialization features are
enabled by default. Ex:

Jackson prints out null values by default.
Jackson does not enable support for java.time.* by default, one must add the
seperate dependency and register the module

ApplicationCall>): Any? {
 val request = context.subject
 val channel = request.value as? ByteReadChannel ?: return null
 val reader = channel.toInputStream().reader(context.call.request.contentCharset() ?: Charsets.UTF_8)
 val type = request.typeInfo
 val xmlMapper = XmlMapper()
 val xml = reader
 val result: Any? = xmlMapper.readValue(xml, type.javaClass)
 return result
 }
}

 // If nothing is specified in the header the request will use XML
 install(ContentNegotiation) {
 gson {
 }
 register(ContentType.Application.Xml, XmlConverter())
 }

Serialization

 install(ContentNegotiation) {
 // If this line is active the request will use XML, unless the header specifies otherwise
 //register(ContentType.Application.Xml, XmlConverter())

Annotations can be used to determine how a single field should behave
@JsonProperty - Set configuration to a single field
@JsonFormat - To determine the datetime format of a single field
@JsonInclude - Set if null values should be included

The raw body data is collected from the request object

Form Parameters can be extracted with the function call.recieveParameters
Cookies sent in the header from the client can be accessed with val cookies: RequestCookies
= call.request.cookies or can be accessed individually with val specificCookie: String? =
request.cookies["specificCookie"]

Multiparts are good for files uploads

In a route, we can get the path variables with call.parameters.get(...)

 jackson {
 registerModule(JavaTimeModule())
 enable(SerializationFeature.INDENT_OUTPUT)
 enable(SerializationFeature.WRITE_SINGLE_ELEM_ARRAYS_UNWRAPPED)
 }
 }

How Data Is Posted to the Route
Endpoint

val channel: ByteReadChannel = call.receiveChannel()
val text: String = call.receiveText()
// receiveStream() is synchronous and blocks the thread
val inputStream: InputStream = call.receiveStream()
val multipart: MultiPartData = call.receiveMultipart()

val multipart = call.receiveMultipart()
multipart.forEachPart { ..}

Routes with Path Variables

https://ktor.io/servers/uploads.html

The Locations feature maps the variables from a class definition. As of right now it is still
an experimental feature, it has been for a while
Requires implementing "io.ktor:ktor-locations:$ktor_version" and then install(Locations) {}
The path variables are mapped by creating a class and annotation it with
@Location("/myLocation/{mypathvar}")
Variables are in { } and it needs to match an argument in the primary constructor
Then the route needs to be mapped using generics with the class we annotated with
Location

Nested Routes can be created with nested inner classes

Request or query parameters are most often used to describe paging and sorting when
dealing with many rows of data
It is the extra parameter after the "?" in a URL
https://localhost:8080/book/list?sortby=author&asc=1
Multiple request parameters are separated with the "&" -sign
Key and value are separated with the "=" sign
We can use Locations to map request parameters to class fields. This is done by adding
extra constructor arguments: @Location("/listbooks") data class List(val sortBy: String, val asc: Int)
A call to the following might look like:
http://localhost:8080/article/flowers/list?sortBy=author,releasedate&asc=1
These arguments can be anything as long as they do not match path variables
All request parameters are optional.

get<MyLocation> {
	call.respondText("${it.mypathvar}")
}

Nested Routes

@Location("/book/{category}")
data class Book(val category: String) {
	@Location("/{author}")
	data class Author(val book: Book, val author: String)
	
	@Location("/list")
	data class List(val book: Book)
}

Routes with Request Parameters

The request can be accessed on the call, when we are setting up the routes with
call.request, using the following: val headerValue: String? =
call.request.headers.get("MyHeaderName")
Mutiple values for a header key can be accessed with: val multipleValues: List<String>? =
request.headers.getAll("MyHeaderWithMultipleValues")
Convienience functions can access standard headers on a request.

The response can be accessed on the call object when we are setting up the routes with
call.response call.response.header("HeaderName", "HeaderValue")
HttpHeaders contain the most common HttpHeaders
call.response.header(HttpHeaders.SetCookie, "CookieValue")
There is a DefaultHeaders feature available for installation

Error handling can be done by importing StatusPages. The install function has three main
configuration options:

Exceptions: Create responses based on exception classes
Satus: Create responses based on status code value
statusFile: Use html file from classpath as response

Working with Headers
Retrieve Headers from Request

Setting Headers on a Response

install(DefaultHeaders) {
	header("SystemName", "BookStore")
}

Error Handling and
Authentication

To prevent recursive stack calls when the same exception is thrown multiple times, each
call is only caught by one handler
It is also possible to redirect the client in the exception handler. That might look
something like this:

We can also return details from the HTTP repsonse:

And the StatusFile return:

install(StatusPages) {
	exception<MyCustomException> { cause ->
		call.respond(HttpStatusCode.InternalServerError, "Whoops a Cusom Error Occurred")
		throw cause
	}
}

install(StatusPages) {
	exception<HttpRedirectException> { e ->
		call.respondRedirect(e.location, permanent = e.permanent)
	}
}

class HttpRedirectException(val location: String, val permanent: Boolean = false): RuntimeException()

install(StatusPages) {
	status(HttpStatusCode.NotFound) {
		call.respond(TextContent("${it.value} ${it.description}",
		ContentType.Text.Plain.withCharsets(Charsets.UTF_8), it))
	}
}

install(StatusPages) {
	statusFile(HttpStatusCode.NotFound, HttpStatusCode.Unauthorized, FilePattern = "my-custom-error#.html")
}
// The # above will be filled with the error code number

Authentication Concepts

Authentication - proves the person or system is who they claim
Authorization - the right to perform an action
Principle - System or person to be authenticated
Credentials - Username and password or API key that can be used to prove the identity of
a principle
Realm - Used to give more information in an unauthorized response

Basic - Supply base64 encoded username and password in header
Form - Username and password sent as form data
HTTP Digest - MD5 encrypt username and password
JWT and JWK - JSON Web Tokens
LDAP within basic Authentication
OAuth 1a and 2.0
We can check credentials against values in database or against a constant in the validate
function. If it's successful we return a UserIdPrinciple.
It is reccomended to create a table with usernames and hashed passwords

Supported Authentication Methods

 install(Authentication) {
 basic("myAuth1") {
 realm = " My Realm"
 validate {
 if (it.name == "mike" && it.password == "password")
 UserIdPrincipal(it.name)
 else null
 }
 }
 basic("myAuth2") {
 realm = "MyOtherRealm"
 validate {
 if(it.password == "${it.name}abc123")
 UserIdPrincipal(it.name)
 else
 null
 }
 }
 }
	
	routing {

An incoming request and outgoing response is called an ApplicationCall
An ApplicationCall is passed through an ApplicationCallPipeline which consists of a number
of interceptors, or it may not have any
Interceptors are invoked one at a time
An interceptor can choose to let the next interceptor continue with the ApplicationCall
An interceptor can choose to finish the ApplicationCall and no more interceptors will
receive the call
The ApplicationCallPipeline consists of phases: 1. Setup 2. Monitoring 3. Features 4. Call 5.
Fallback
An interceptor registers to a specific phase
Code can be run before and after a pipeline

 authenticate("myAuth1") {
 get("/secret/weather") {
 val principal = call.principal<UserIdPrincipal>()!!
 call.respondText("Hello ${principal.name} it is secretly going to rain today")
 }
 }

 authenticate("myAuth2") {
 get("/secret/color") {
 val principal = call.principal<UserIdPrincipal>()!!
 call.respondText("Hello ${principal.name}, green is going to be popular tomorrow")
 }
 }
}

Routing Interceptors - Check
Admin Rights

	// creating a new interceptor to be called after the call
 val mike = PipelinePhase("Mike")
	// This would not work if it was insertPhaseAfter, as the route would have already provided a response
 insertPhaseBefore(ApplicationCallPipeline.Call, mike)
	
 intercept(ApplicationCallPipeline.Setup) {
 log.info("Setup phase")

 }
 intercept(ApplicationCallPipeline.Call) {
 log.info("Call phase")
 }
 intercept(ApplicationCallPipeline.Features) {
 log.info("Features phase")
 }
 intercept(ApplicationCallPipeline.Monitoring) {
 log.info("Monitoring phase")
 }

 intercept(mike) {
 log.info("Mike Phase${call.request.uri}")
 if (call.request.uri.contains("mike")) {
 log.info("The uri contains mike")
			call.respondText("The Endpoint contains mike")
			// finish means the remaining interceptors will not be called
 finish()
 }
 }

 routing {

 get("/something/mike/something") {
 call.respondText("Endpoint handled by route.")
 }
 }

So to retain the client information after login we have two options:

1. Create a server-side session.
2. Store the session in a Json token on the Client side

With server-side sessions, you will either have to store the session identifier in a database, or else
keep it in memory and make sure that the client always hits the same server. Both of these have
drawbacks. In the case of the database (or other centralised storage), this becomes a bottleneck
and a thing to maintain - essentially an extra query to be done with every request.

With an in-memory solution, you limit your horizontal scaling, and sessions will be affected by
network issues (clients roaming between Wifi and mobile data, servers rebooting, etc).

Moving the session to the client means that you remove the dependency on a server-side session,
but it imposes its own set of challenges.

Storing the token securely.
Transporting it securely.
JWT sessions can sometimes be hard to invalidate.
Trusting the client's claim.

And I'm not going to go into much detail on the types of encryption or cryptography. I'll be using
RSA-256 encryption, which requires a public and private key. Ktor has a great example of JWT
authentication with RSA-256 encryption. I've stolen some of their code below, but I decided to use
javax.security rather than the ktor JwkProvider.

Setting up basic authentication in Ktor is pretty straightforward. What gets more complicated is
storing the user session in a token or in-memory session.

In the validation function we can choose how we want to verify the username and password. I like
to create a database to store the username and a hashed version of the password, and then
validate the user in the repository. Something easier would be to create an in-memory hashtable of

Ktor Authentication and
Authorization

Basic Auth

https://ktor.io/docs/basic.html

users and passwords, all in the docs.

Now when ever I make a request to a route protected by "auth-basic" the application will
automatically search the request for a basic authentication credentials.

What I do is have my login route return a RS256 signed JWT token after being signed in, so I just
wrap the route in an authentication block.

Note there is some the token is signed with an RSA256 algorithm above, more about that in
another chapter. Also I'm returning the token in the response body. This is ok, but the production
standard is to store the token in an SSL-encrypted cookie. That way, we don't have to send the

 install(Authentication) {

 basic("auth-basic") {
 validate { credentials ->
 val login = LoginRepo(loginConfig)
 val validation = login.validateUser(credentials.name, credentials.password)
 login.close()
 validation
 }
 }

 authenticate("auth-basic") {
 get("/LOGIN") {
 log.info("Starting login sequence")
 val publicKey = jwkProvider.get(jwtConfig.pubKeyId).publicKey
 val keySpecPKCS8 = PKCS8EncodedKeySpec(Base64.getDecoder().decode(jwtConfig.privateKey))
 val privateKey = KeyFactory.getInstance("RSA").generatePrivate(keySpecPKCS8)
 val user = this.call.authentication.principal<LoginEntity>()
 val token = JWT.create()
 .withAudience(jwtConfig.audience)
 .withIssuer(jwtConfig.issuer)
 .withClaim("NAME", user?.name)
 .withClaim("ROLE", user?.role)
 .withClaim("EMAIL", user?.email)
 .withExpiresAt(Date(System.currentTimeMillis() + 60000))
 .sign(Algorithm.RSA256(publicKey as RSAPublicKey, privateKey as RSAPrivateKey))
 call.respond(hashMapOf("token" to token))
 }
 }

token back and forth or store anything in session storage. Also this reduces the risk of cross-site-
scripting. More on that in a second.

"JWTs are an open standard that defines a way for securely transmitting information between
parties as a JSON object."

JWTs are used for quick Authorization, not authentication. Store things like a user's role, email, or
other nonsensitive information in the payload. NEVER use a token to store a password.

Ktor handles JWTs passed in the Authorization header using the Bearer scheme like so:
Authorization: Bearer {{auth_token}}

See my Angular page on JWTs for more info.

The following dependcies are required:

1. Client makes a POST request with credentials:

2. If the credentials are validate the server generates a JSON web token and signs it with the
specified algorithm

3. Server sends generated JWT to a client

A client can now make a request to a protext resource with JSON scheme in the header

JSON Web Tokens

 implementation "io.ktor:ktor-auth:$ktor_version"
 implementation "io.ktor:ktor-auth-jwt:$ktor_version"

Authorization Flow:

POST http://localhost:8080/login
Content-Type: application/json

{
 "username": "jetbrains",
 "password": "foobar"
}

https://ktor.io/docs/jwt.html

4. Server recieves the request and performs the following validations:
verify the signature of a JSON object
perform additional validations on the JWT payload

5. After validation server responds with contents of protected resource

Add the JWT function to the install Authentciation module, you can define your private key, issuer,
audience and realm in application.conf,

Alternatively, there's no downside to generating a new private key every run. In the official Ktor
example they create the JWT token directly in the routing function. I perfer to created a seperate
class for token generation and validation that looked something like this:

GET http://localhost:8080/hello
Authorization: Bearer {{auth_token}}

Installation and Configuration

 val privateKeyString = environment.config.property("jwt.privateKey").getString()
 val issuer = environment.config.property("jwt.issuer").getString()
 val audience = environment.config.property("jwt.audience").getString()
 val myRealm = environment.config.property("jwt.realm").getString()
 val jwkProvider = JwkProviderBuilder(issuer)
 .cached(10, 24, TimeUnit.HOURS)
 .rateLimited(10, 1, TimeUnit.MINUTES)
 .build()
 install(Authentication) {
 jwt("auth-jwt") {
 realm = myRealm
 verifier(jwkProvider, issuer) {
 acceptLeeway(3)
 }
 validate { credential ->
 if (credential.payload.getClaim("username").asString() != "") {
 JWTPrincipal(credential.payload)
 } else {
 null
 }
 }
 }
 }

class JWTService(private val jwtConfig: JwtConfig, private val jwkProvider: JwkProvider) {

 private val privateKey: PrivateKey

 init {
 val keySpecPKCS8 = PKCS8EncodedKeySpec(Base64.getDecoder().decode(jwtConfig.privateKey))
 privateKey = KeyFactory.getInstance("RSA").generatePrivate(keySpecPKCS8)
 }

 fun generateToken(user: LoginEntity): String = JWT.create()
 .withAudience(jwtConfig.audience)
 .withIssuer(jwtConfig.issuer)
 .withClaim("NAME", user.name)
 .withClaim("ROLE", user.role)
 .withClaim("EMAIL", user.email)
 .withExpiresAt(Date(System.currentTimeMillis() + 60000))
 .sign(Algorithm.RSA256(jwkProvider.get(jwtConfig.pubKeyId).publicKey as RSAPublicKey, privateKey
as RSAPrivateKey))

 fun verifyToken(token: String?): Boolean {
 if (token == null) {
 println("No token found in memory")
 return false
 }
 val payloadJson = validatedToken(token) ?: return false
 return (payloadJson["ROLE"] == jwtConfig.realm)
 }

 fun getLoginEntity(token: String): LoginEntity? {
 val payloadJson = validatedToken(token) ?: return null
 val name = payloadJson["NAME"].toString()
 val email = payloadJson["EMAIL"].toString()
 val role = payloadJson["ROLE"].toString()
 return LoginEntity(name, email, role)
 }

 private fun validatedToken(validateToken: String): JSONObject? {
 try {
 val encodedPayload = JWT.require(
 Algorithm.RSA256(

Now that we have that ready I change the login function to look like so:

 jwkProvider.get(jwtConfig.pubKeyId).publicKey as RSAPublicKey,
 privateKey as RSAPrivateKey
)
)
 .build()
 .verify(validateToken)
 .payload
 val payload = String(Base64.getDecoder().decode(encodedPayload))
 val parser = JSONParser()
 return parser.parse(payload) as JSONObject
 } catch (jwtException: JWTVerificationException) {
 println("Failed to verify JWT: " + jwtException.message)
 return null
 } catch (exception: Exception) {
 println("An error occured: " + exception.message)
 return null
 }
 }
}

 authenticate("auth-basic") {
 get(CommonRoutes.LOGIN) {
 log.info("Starting login sequence")
 val user = this.call.authentication.principal<LoginEntity>()!!
 val token = jwtService.generateToken(user)
 // "secure=true" will only work when a valid HTTPS certificate is present!
 val cookie = Cookie("token", token, httpOnly = true, secure = true)
 call.response.cookies.append(cookie)
 call.respond(Response(status = "ok"))
 }
 }

 authenticate("auth-jwt"){
 get("getRole") {
 val entity = jwtService.getLoginEntity(call.request.cookies["token"]!!) ?: LoginEntity("", "", "")
 call.respond(entity)
 }
 get("logout") {

As well as implmented cookies, I added a "getRole" route that checks for cookies and returns a
user entity if the user is logged in. Using this we can prevent the user from having to login
everytime the page is refreshed.

Then we can protect a route with the following syntax:

Above I mentioned the best security practice is to SSL-encyrpt our cookies over https. This requires
a SSL-certificate. This may be a bit difficult to set up depending on how you are running Ktor. I'm
using a docker container with an nginx reverse proxy and a cloudflare domain. I already have an
SSL certifate for my domain, but the problem was the my docker was running on http which was
causing issues when using secure cookies.

In many situtations it is bad practice to use self-signed certificates, but in the case of an LAN
address that only we have access to I think it will be okay. TODO: More research on if a reverse
proxy exposes the keys on the host.

Ktor has a great library for generating self-signed certificates within a embedded server, but it's
labeled as only for testing purposes. Instead I'll generate the ssl certificate with Let's Encrypt and
store that in a keystore generated manually with keytool and add the configuration to
application.conf .

 call.response.cookies.appendExpired("token")
 call.respond(Response(status = "ok"))
 }
 }

routing {
 authenticate("jwt-auth") {
 get("/") {
 call.respondText("Hello, ${call.principal<UserIdPrincipal>()?.name}!")
 }
 }
}

Generating a Self-Signed
Certificate

https://ktor.io/docs/ssl.html#self-signed-keytool
https://ktor.io/docs/ssl.html#self-signed-keytool

In a nutshell, steps are as follows:

1. Pulling the Let's Encrypt client (certbot).
2. Generating a certificate for your domain (e.g. example.com)

./certbot-auto certonly -a standalone -d example.com -d www.example.com

Things are generated in /etc/letsencrypt/live/example.com. Industry standard is PKCS12 formatted
file. Convert the keys to a PKCS12 keystore using OpenSSL as follows:

Open /etc/letsencrypt/live/example.com directory.

openssl pkcs12 -export -in fullchain.pem -inkey privkey.pem -out keystore.p12 -name tomcat -CAfile chain.pem -
caname root

The file keystore.p12 with PKCS12 is now generated in /etc/letsencrypt/live/example.com.

It's time to configure your Spring Boot application. Open the application.properties file and put
following properties there:

server.port=8443 security.require-ssl=true server.ssl.key-
store=/etc/letsencrypt/live/example.com/keystore.p12 server.ssl.key-store-password=
server.ssl.keyStoreType=PKCS12 server.ssl.keyAlias=tomcat

Read my blog post for further details and remarks.

When signing a JSON Web Token (JWT) from the server, two algorithms are supported for signing
JSON Web Tokens (JWTs): RS256 and HS256. HS256 is the default for clients and RS256 is the
default for APIs. When building applications, it is important to understand the differences between
these two algorithms. To begin, HS256 generates a symmetric MAC and RS256 generates an
asymmetric signature. Simply put HS256 must share a secret with any client or API that wants to
verify the JWT. Like any other symmetric algorithm, the same secret is used for both signing and
verifying the JWT. This means there is no way to fully guarantee Auth0 generated the JWT as any
client or API with the secret could generate a validly signed JWT. On the other hand, RS256
generates an asymmetric signature, which means a private key must be used to sign the JWT and a
different public key must be used to verify the signature. Unlike symmetric algorithms, using
RS256 offers assurances that our server is the signer of a JWT since only one party has the private
key.

At the most basic level, the JWKS is a set of keys containing the public keys that should be used to
verify any JWT issued by the authorization server. We set this up as a static endpoint on the
backend server, something like https://your-domain/api/.well-known/jwks,json To create that I
added a folder called certs/ to the base project directory and then added the following in a file
called 'jwks.json':

Signing JSON Tokens with
RSA
RS256 vs HS256

Verifying RSA256

{
"keys": [
 {
 "alg": "RS256",
 "kty": "RSA",
 "use": "sig",
 "x5c": [

alg: is the algorithm for the key
kty: is the key type
use: is how the key was meant to be used. For the example above, sig represents
signature verification.
x5c: is the x509 certificate chain
kid: is the unique identifier for the key
x5t: is the thumbprint of the x.509 cert (SHA-1 thumbprint)
parameter n: Base64 URL encoded string representing the modulus of the RSA Key.
parameter e: Base64 URL encoded string representing the public exponent of the RSA
Key.
parameter d: Base64 URL encoded string representing the private exponent of the RSA
Key.
parameter p: Base64 URL encoded string representing the secret prime factor of the RSA
Key.
parameter q: Base64 URL encoded string representing the secret prime factor of the RSA
Key.
parameter dp: Base64 URL encoded string representing the first factor CRT exponent of
the RSA Key. d mod (p-1)

"MIIC+DCCAeCgAwIBAgIJBIGjYW6hFpn2MA0GCSqGSIb3DQEBBQUAMCMxITAfBgNVBAMTGGN1c3RvbWVyLWRlbW
9zLmF1dGgwLmNvbTAeFw0xNjExMjIyMjIyMDVaFw0zMDA4MDEyMjIyMDVaMCMxITAfBgNVBAMTGGN1c3RvbWVyL
WRlbW9zLmF1dGgwLmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMnjZc5bm/eGIHq09N9HKHa
hM7Y31P0ul+A2wwP4lSpIwFrWHzxw88/7Dwk9QMc+orGXX95R6av4GF+Es/nG3uK45ooMVMa/hYCh0Mtx3gnSuoT
avQEkLzCvSwTqVwzZ+5noukWVqJuMKNwjL77GNcPLY7Xy2/skMCT5bR8UoWaufooQvYq6SyPcRAU4BtdquZRiBT4U
5f+4pwNTxSvey7ki50yc1tG49Per/0zA4O6Tlpv8x7Red6m1bCNHt7+Z5nSl3RX/QYyAEUX1a28VcYmR41Osy+o2OU
CXYdUAphDaHo4/8rbKTJhlu8jEcc1KoMXAKjgaVZtG/v5ltx6AXY0CAwEAAaMvMC0wDAYDVR0TBAUwAwEB/zAdBgNV
HQ4EFgQUQxFG602h1cG+pnyvJoy9pGJJoCswDQYJKoZIhvcNAQEFBQADggEBAGvtCbzGNBUJPLICth3mLsX0Z4z8T8
iu4tyoiuAshP/Ry/ZBnFnXmhD8vwgMZ2lTgUWwlrvlgN+fAtYKnwFO2G3BOCFw96Nm8So9sjTda9CCZ3dhoH57F/hV
MBB0K6xhklAc0b5ZxUpCIN92v/w+xZoz1XQBHe8ZbRHaP1HpRM4M7DJk2G5cgUCyu3UBvYS41sHvzrxQ3z7vIePRA
4WF4bEkfX12gvny0RsPkrbVMXX1Rj9t6V7QXrbPYBAO+43JvDGYawxYVvLhz+BJ45x50GFQmHszfY3BR9TPK8xmM
mQwtIvLu1PMttNCs7niCYkSiUv2sc2mlq1i3IashGkkgmo="
],
 "n": "yeNlzlub94YgerT030codqEztjfU_S6X4DbDA_iVKkjAWtYfPHDzz_sPCT1Axz6isZdf3lHpq_gYX4Sz-
cbe4rjmigxUxr-FgKHQy3HeCdK6hNq9ASQvMK9LBOpXDNn7mei6RZWom4wo3CMvvsY1w8tjtfLb-yQwJPltHxShZq5-
ihC9irpLI9xEBTgG12q5lGIFPhTl_7inA1PFK97LuSLnTJzW0bj096v_TMDg7pOWm_zHtF53qbVsI0e3v5nmdKXdFf9BjIA
RRfVrbxVxiZHjU6zL6jY5QJdh1QCmENoejj_ytspMmGW7yMRxzUqgxcAqOBpVm0b-_mW3HoBdjQ",
 "e": "AQAB",
 "kid": "NjVBRjY5MDlCMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg",
 "x5t": "NjVBRjY5MDlCMUIwNzU4RTA2QzZFMDQ4QzQ2MDAyQjVDNjk1RTM2Qg"
 }
]}

parameter dq: Base64 URL encoded string representing the second factor CRT exponentof the RSA
Key. d mod (q-1)

parameter qi: Base64 URL encoded string representing the first CRT coefficient of the RSA Key. q^-1
mod p

And the I added the following routes:

I recommend the following links:

Generate JWKS Token
Change from JWKS and PEM format

1. Retrieve the JWKS and filter for potential signature verification keys.
2. Extract the JWT from the request's authorization header.
3. Decode the JWT and grab the kid property from the header.
4. Find the signature verification key in the filtered JWKS with a matching kid property.
5. Using the x5c property build a certificate which will be used to verify the JWT signature.
6. Ensure the JWT contains the expected audience, issuer, expiration, etc.

 static(".well-known") {
 staticRootFolder = File("certs")
 file("jwks.json")
 }

Steps for validating the JWT Server-side:

https://mkjwk.org/
https://8gwifi.org/jwkconvertfunctions.jsp

