
Previously we have assumed given covariates, the observations are independent. However, there
are many situations where this does not hold. Bayesian Hierarchical models can be used to cluster
observations, where each cluster might have its own cluster-specific parameters.

In Bayesian hierarchical models, we start by imposing a prior that is a function of different
parameters. We'll introduce a new variable γ, which is called the hyper-prior; The prior of α
depends on β, which depends on γ.

Hyper-parameters: Parameters of prior distribution
Hyper-Priors: Distribution of Hyper-parameters

A typical example of this in medical research is population of hospitals, providers within hospitals,
and patients within providers. Any datasets with such a structure are called hierarchical.
Hierarchical models are also called partial pooled or random effect models.

We are interested in making inference of specific units. In doing so observations may be collected
over time on the same individuals, so repeated measures must be accounted for.

Independent models have no randomly-varying effects
Pooled models have a randomly-varying (subject-specific) effects of slope
Hierarchical h ave randomly-varying (subject specific) effects of slope and intercept

Hierarchical Models

Ranking Posterior Estimates

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/J3Rimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/fDaimage.png


We can simply rank the outcome/results in a box plot such as the above, but this does not consider
the uncertainty of the estimates.

We can derive the posterior distribution of each ranking by ranking the estimates at each iteration
of the Gibbs Sampling and generate the posterior distributions of the ranks. Below the ranks are in
parenthesis:

The posterior distribution of ranks gives us a measure of the uncertainty of the ordering.

There are three main alternative approaches to account for the hierarchical structure of the data in
coding, in order of popularity:

1. Nested Indexes - Define an index of the same length of the data that specifies the cluster
to which each unit belongs.

2. Offset - Construct a vector of indexes that define the first and last element of each cluster.
Needs two indexes

Tabular Format:  Long Format: 

3. Data padding - Structure data in array format and fill in empty cells with NA when clusters
include different sample sizes

Data Formatting

Model Implementation With Offset

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/Rr2image.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/HFzimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/srXimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/NKzimage.png


### Begin by setting up the data and generating the offset
## Prepare outcome and covariate data
y <- na.omit(c(t(HB.data[, 6:8]))) # All outcome data
y0 <- HB.data[, 5] # Baseline data
t <- c(t(HB.data[, c(2, 3, 4)]))[-na.action(y)] # Times corresponding to non-missing outcome

## Fill in data for offset indexes one subject at a time, starting with the first subject
i <- 1
offset <- c(1, 1 + length(which(is.na(HB.data[1, 6:8]) == F)))

## Add a new offset for each subject until the end of data
while (offset[(i + 1)] < length(y) - 1) {
	i <- i + 1
	offset <- c(offset, offset[i] + length(which(is.na(HB.data[i,6:8]) == F))) # Calculate offsett for subject i
}
offset <- c(offset, (length(y) + 1)) # Concatenate to the set of offsets

model.1 <- "model {
	for (i in 1:N) {
		for(j in offset[i] : (offset[i+1]-1)){
			y[j] ~ dnorm(psi[j], tau.y)
			psi[j] <- alpha[i] + beta[i]*(t[j] - tbar)
				+ gamma*(y0[i] - y0bar)
		}
	alpha[i] ~ dnorm(mu.alpha, tau.alpha)
	beta[i] ~ dnorm(mu.beta, tau.beta)
	}
	# priors
	sigma.a <- 1/tau.alpha
	sigma.b <- 1/tau.beta
	sigma.y <- 1/tau.y
	mu.alpha ~ dnorm(0, 0.0001)
	mu.beta ~ dnorm(0, 0.0001)
	gamma ~ dnorm(0, 0.0001)
	tau.alpha ~dgamma(1,1)
	tau.beta ~dgamma(1,1)
	tau.y ~dgamma(1,1)
	y0bar <- mean(y0[])
	tbar <- mean(t[])
}"



i = subject
offset[i]: (offset[i + 1] -1) = observations corresponding to subject i

The major assumption of MCMC is convergence. There are 4 widely-used diagnostic plots in R:

Gelman and Rubin: With M >= 2 chains calculate the potential scale reduction factor as
ratio of estimated variance of the parameter and within-chain variance
Gewke: Test for equality of means between two non-overlapping parts of the Markov
Chain
Raftery and Lewis: Calculates the number of iterations N and the number of burn-ins M
necessary for a quantile of interest q to be estimated with an acceptable tolerance r (in
(q-r, q+r)) with a probability s
Heidelberg and Welch: Calculates a test statistic to test the null hypothesis that the
Markov chain is from a stationary distribution

With m chains of length n, GR convergence diagnostic provides numeric convergence summary
based on multiple chains (at least 3 chains are required)

If the chains are all from stationary distributions:

Checking Convergence

Gelman and Rubin Diagnostics

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/22Himage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/cRjimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/7cuimage.png


This graph is an example of chains that do not converge; They could be approaching 1 but we see
a lot of variability especially near the beginning.

In this plot we can observe the lines converge around 1.

As the number of chains for convergence increases in more complicated models we require more
computing power. There are several packages in R that can be used to do this, perhaps the most
used being snowfall or doParallel.

Joint likelihood of data and parameters:

There are three primary approaches used:

jags.snp <- jags.model(textConnection(model.snp), data = data.snp, n.adapt = 1500, n.chains = 3) 
update(jags.snp, 1000)
test.snp <- coda.samples(jags.snp, c("beta.snp"), n.iter = 1000)
geweke.diag(test.snp, frac1 = 0.1, frac2 = 0.5)
gelman.diag(test.snp)
gelman.plot(test.snp, ylim = c(1, 4))

Note: Parallel Computing

Comparing Hierarchical Models

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/VRximage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/mctimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/INaimage.png


Deviance Information Criterion (DIC)

Which is based on p(y | θ)
Akaike Information Criterion (AIC)
    AIC = -2 log(y | φ̂) + 2pφ
where pφ is the number of hyper-parameters
Bayesian Information Criterion (BIC)
    BIC = -2 log(y | φ̂) + log(n)*pφ

"Likelihood" is not well defined in a hierarchical model; It depends on the "focus" of the study if we
want to use θ, φ, or the model structure without any unknown parameters. It is not a matter of
which is correct but which is appropriate for our purpose.

Consider an example where our model predicts classes within schools in within a country:

If we are interested in predicting future classes in those school then θ is the focus and
deviance-based methods such as DIC are appropriate
If we are interested in predicting results of future schools in a country then φ is the focus
and marginal-likelihood methods such as AIC are appropriate; Relevant to education
within the whole country.
If we are interested in predicting results for a new country, then no parameters are in
focus, the Bayes factors are appropriate to compare models; Relevant to general
statements about education in the
whole world or outside of the country being studied.

Mixture models integrate multiple data generating processes into a single mode; AKA a mixture of
many distributions. This is especially useful in cases where the data doesn't allow us to fully
identify which observations belong to which process, such as clustering.

Mixture Models

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/hHyimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/86Yimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/7z5image.png


 ε value hidden → two profiles

model.1 <- "model{
p[1] <- theta
p[2] <- 1 - theta
for( i in 1 : N ) {
	epsilon[i] ~ dcat(p[]) # dcat: categorical outcome
	y[i] ~ dnorm(mu[epsilon[i]],tau[epsilon[i]])
}
theta ~ dbeta(1,1)
for (j in 1:2){
	mu[j] ~ dnorm(0.0, .0000001);
	tau[j] ~ dgamma(1,1)
	sigma[j] <- pow(tau[j],-2)
}
}"

Revision #8
Created 10 February 2023 19:09:12 by Elkip
Updated 27 February 2023 01:51:01 by Elkip


