
By now we know what a linear regression looks like. Let's consider a special case where number of
parameters, p = 0:

Assume Y is distributed as a normal distribution with mean ?0:
Y|?0, ?  ? N(?0 , ?2 = 1 /? )

The density function is:

Mean and variance:
E(Y) = ?0; V(Y) = 1/?0 + ?

The Posterior Distribution for ?0 is calculated using Bayes' Theorem

We use a Normal prior distribution for the mean ?0 ? N(?0 , ?0) and a Gamma prior distribution for the precision parameter:

JAGS example:

Bayesian Linear Regression

? = 1 / ?2 , also called precision   <- Be aware this will be used interchangeably with variance

When Mean and Variance are Unknown

model.1 <- "model {
	for (i in 1:N) {
		hbf[i] ~ dnorm(b.0,tau.t)
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Given the Prior and Observed data we can compute the probability of a new observation will be
greater or less than some integer threshold. The predictive distribution is a distribution of
unobserved y~, that is:

The two sources of variability in prediction are in the parameters V( ?0, ? | y) and the variability in the new observation V(y | ?0, ?)

To simulate from predictive density, do repeatedly:

1. Sample one sample ?0*, ?* from posterior ?0, ? | y
2. Sample one y~ ~ N(?0*, 1/?* )
 During the Gibbs sampling we generate samples values from the posterior distribution ?0, ? | y
 So Generating y~ ~ N(?0, ? | y) will produce the correct predictive distribution samples. P(y~ > 20 | data) is the proportion of y~ > 20

Since in the example above the outcome distribution can only be positive we can use a Log-Normal
distribution, a continuous distribution with support for values y > 0.

	}
	## prior on precision parameters
	tau.t ~ dgamma(1,1);
	### prior on mean given precision
	mu.0 <- 5
	tau.0 <- 0.44
	b.0 ~ dnorm(mu.0, tau.0);
    
    ### prediction
	hbf.new ~ dnorm(b.0,tau.t)
	pred <- step(hbf.new-20) # hbf >= 20
}"

Predictive Distributions

Log Normal Distributions
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Y | η, σ2 ~ INormal(η, σ2) with density function:

It also implies:     Log( Y )~ Normal(η, σ2)

In JAGS we use: dlnorm(η, σ2)

In the above example, we get the initial prior on ?0 from previous data, where we derived
median(b.0)=5 and V(b.0)=1/0.44=2.27
Then we take the log of the median to get η and transform the precision variable with:  log(1 + V
(b.0)/E (b.0)2 ), then take the inverse of that to get the variance.

"model {
for (i in 1:N) {
	hbf[i] ~ dlnorm(lb.0,tau.t)
}

## prior on precision parameters
tau.t ~ dgamma(1,1);

### prior on mean
lb.0 ~ dnorm(1.6,1.6);

b.0 <- exp(lb.0)

### prediction
hbf.new ~ dlnorm(lb.0,tau.t)
pred <- step(hbf.new-20)
}"

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/vEWimage.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/ye6image.png
https://bookstack.mitchellhenschel.com/uploads/images/gallery/2023-02/NX5image.png


Let's consider data of the SNP rs766432 on the effect of HbF

Where HT is heterzygote, HM is homozygoute and NP is common alleles.

We start by creating indicators for HT and NP using the equals( , ) function in JAGS

The mean of Log HbF

b.1 = the effect of HT vs HM
b.2 = the effect of NP vs HM
The hypotheses:
1. H0: b.1 = 0; HM and HT have the same effect
2. H0: b.2 = 0; HM and NP have the same effect

Parameter Interpretation

model.1 <- "model {
	for (i in 1:N) {
		hbf[i] ~ dlnorm(mu[i],tau.t)
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		mu[i] <- b.0+b.1 *equals(rs766432[i],2)+b.2 *equals(rs766432[i],3)
	}
	## prior on precision parameters
	tau.t ~ dgamma(1,1);
	### prior on mean given precision
	b.0 ~ dnorm(0, 0.001);
	b.1 ~ dnorm(0, 0.001);
	b.2 ~ dnorm(0, 0.001);
	### prediction
	lmu.1 <- b.0;
 	hbf.1 ~ dlnorm( lmu.1,tau.t); 
    pred.1 <- step(hbf.1-20)
	lmu.2 <- b.0+b.1; 
    hbf.2 ~ dlnorm( lmu.2,tau.t); 
    pred.2 <- step(hbf.2-20)
	lmu.3 <- b.0+b.2; 
    hbf.3 ~ dlnorm( lmu.3,tau.t); 
    pred.3 <- step(hbf.3-20)
	### fitted medians by genotypes
	mu.1 <- exp(lmu.1)
	mu.2 <- exp(lmu.2)
	mu.3 <- exp(lmu.3)
	par.b[1] <- b.0;
	qpar.b[2] <- b.1;
	par.b[3] <- b.2
	par.h[1] <- hbf.1; 
    par.h[2] <- hbf.2; 
    par.h[3] <- hbf.3;
	par.m[1] <- mu.1;
	par.m[2] <- mu.2;
	par.m[3] <- mu.3
	par.p[1] <- pred.1; 
    par.p[2] <- pred.2; 
    par.p[3] <- pred.3
}"

data.1 <- source("saudi.data.2.txt")[[1]]
model_hbf <- jags.model(textConnection(model.1), data = data.1,n.adapt = 1000)
update(model_hbf, 10000)
test_hbf <- coda.samples(model_hbf, c("par.b", "par.h", "par.m","par.p"), n.iter = 10000)



To analyze the convergence we can observe normality in auto-correlation plots. If we wee
substantial auto-correlation (lag > X), we can repeat the the MCMC for 100,000 simulations and
sample every X steps by using thin = X in coda.samples(); where X is how often order occurs in the
plot.

test_hbf <- coda.samples(model_hbf, c("par.b", "par.h", "par.m","par.p"), n.iter = 1e+05, thin =
30)

Depending on which hypothesis we are testing we could also eliminate b.1 or b.2. Or in other
situations reparameterizations can reduce correlation.

In this example let's consider a study of 5 different treatment groups assigned to wear shirts with
differing levels of cotton (15%, 20%, 25%, 30%, and 35%) and strength was measured. We'll code
these levels as dummy variables and

Note that since 15% is the reference group we keep it as a constant.

summary(test_hbf)
plot(test_hbf)
autocorr.plot(test_hbf)

ANOVA Example

model.1 <- "model {
	### data model
	for(i in 1:N){
		y[i] ~dnorm(mu[i], tau)
		mu[i] <- b.15 + b.20*lev.20[i] +b.25 *lev.25[i] +
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These are models that include a continuous covariate and a categorical variable with 2 categories.

When the slope differs in the 2 groups and the lines are not parallel

		b.30*lev.30[i] +b.35 * lev.35[i] 
    }
	###
	prior
	b.15 ~dnorm(0,0.0001); ## referent group
	b.20 ~dnorm(0,0.0001);
	b.25 ~dnorm(0,0.0001);
	b.30 ~dnorm(0,0.0001);
	b.35 ~dnorm(0,0.0001);
	tau ~dgamma(1,1)
	### difference in strength between level 3 (25%) and level 4 (30%)
	b.30.25 <- b.30-b.25
	### estimated strength in groups (30%)
	strength[1] <- b.15
	strength[2] <- strength[1]+b.20
	strength[3] <- strength[1]+b.25
	strength[4] <- strength[1]+b.30
	strength[5] <- strength[1]+b.35
}"

ANCOVA Example

model.1 <- "model{
  ### data model
  for(i in 1:N){
      hbf_after[i] ~dlnorm(mu[i],tau)
      Lhbf_baseline[i] <- log(hbf_baseline[i])
      mu[i] <- beta.0 + beta.d*Drug[i] +
      beta.b*(Lhbf_baseline[i]-mean(Lhbf_baseline[])) +
      beta.i*Drug[i] *(Lhbf_baseline[i]-mean(Lhbf_baseline[]))
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So if the interaction term is significant then we would conclude the treatment has an effect

Treat missing values in the response as unknown parameters and JAGS will generate them as a
form of imputation. Missing data in the covariates however is not so easy.

Model selection based on marginal likelihood is most robust but difficult to implement
Often model search over many models is based on BIC using posterior estimates of
parameters
Model selection for a small number of models is based on posterior intervals

Start from the deviance: -2log(P(y | β, τ ))

Deviance information Criterion:
DIC = Dbar + pD = Dhat + 2 * pD

Dbar: -2 E(log(P(y | β, τ ))) = posterior mean of the deviance
Dhat: -2 log(P(y | β^, τ^ ) = point estimate of the deviance using the posterior means of the

  }
  ### prior density
  beta.0 ~ dnorm(0,0.0001)
  beta.d ~dnorm(0, 0.0001)
  beta.b ~dnorm(0, 0.0001)
  beta.i ~dnorm(0,0.0001)
  tau ~ dgamma(1,1);
  ### inference
  parameter[1] <- beta.0
  parameter[2] <- beta.d
  parameter[3] <- beta.b
  parameter[4] <- beta.i
}"
### generate data
Drug = rep(0, nrow(hbf.data))
Drug[treatment == "Hy"] <- 1
table(Drug, hbf.data$Drug)
data.1 <- list(N = as.numeric(nrow(hbf.data)), hbf_baseline = hbf_baseline, hbf_after = hbf_after, Drug = Drug)
model_mean <- jags.model(textConnection(model.1), data = data.1,n.adapt = 1000)
update(model_mean, 10000)
test_mean <- coda.samples(model_mean, c("parameter"), n.iter = 10000)

Missing Values

Model Selection: DIC



parameters
pD: Dbar - Dhat = Effective number of parameters

The model with the smallest DIC is estimated to be the model that would best predict a replicate
dataset of the same structure as the observed.
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