
TypeScript is a superset of JavaScript with added features Java Devs will recongnize

(primative types are lower case)

number - equivalent to a Java double, this is used to decalare any type of number
boolean - same as Java
string - same as Java
symbol - Very rarely used
null - variable has not been given a valid value
undefined - variable has not been initalized
Array - Similar to Java List, they can be any size and grow and shrink over time, and you
can use generics as you would in Java

Tuple - Array of fixed size of any object
any - Equivanlent to Object type in Java
object - Used to represent any non-primative data types
void - Similar to Java in that it means a function can return nothing, but a variable can also
be set to void

Take the below code for example

TypeScript

Intro to TypeScript

TS Data Types

 exploringArrays() {
 const myArray1 = new Array<number>();
 const myArray2: number[] = [1, 2, 3, 4];
 }

export class AppComponent {
 title = 'ExploringTypeScript';

 readonly myNumber: number;

Variables declared at the method level must have the let or const keyword
As in JS you don't need to declare the type, but once a variable is assigned to a type it
cannot be changed
By default all class-level variables are mutiable, but this can be changed with the readonly
keyword

myArray.slice(<start index>, <end index>) returns an array from start index up to but not
including end index
myArray.splice(<start index>, <number of elements to remove>)` remove elements in array
myArray.pop() removes and returns the last element from the list
myArray.push() add element to the end of the list

Be careful not to use in instead of of above, that will fetch the indices rather than the
values
In the above, you could change next to the const modifier, as it never changes within the
loop. But i could not be changed to const as the values changes throughout the loop.

 someMethod(): void {
 let anotherNumber;
 const aThirdNumber = 1;

 anotherNumber = 2;
 }
}

Working with Arrays

Loops
for (let i = 0; i < 10; i++) {
	console.log(i);
}

for (let next of myArrray){
	console.log(next);
}

Because TypeScript is compiled to JavaScript classes don't actaully exist at runtime.

JavaScript's concept of an Object is a set of key-value pairs. let myObject = {firstname: 'Bob',
age: 20}
These also exist in TypeScript, but classes are far more powerful.
Also, unless there is some sort of biussness logic involved, getters and setters are
pointless because anyone can access them. Unlike in Java, just make your variables public
You also cannot have multiple constructors, even with different parameters. Instead you
can have Optional parameters
Also unlike Java, multiple classes can exist in one file.

Enums also exist, and they are treated as arrays
Values 0 to n are automatically assigned to each entry, but this can be changed
Also the looping behavior changes if you set it to custom values

Classes and Objects

export class Book {
 title: string;
 author: string;
 price: number;
 readonly id: number = 1;

 constructor(author: string, title?: string) {
 this.author = author;
 if (title) {
 this.title = title;
 }
 }
}

enum SubjectArea {
 ART, HISTORY, SCIENCE, LITURATURE
}

printArrays(): void {
 for (const subject in SubjectArea) {
 if (true) {	// the if statement just surpresses a warning
 console.log(subject);

methodName(paramName: paramType): ReturnType

TS methods are public by default, use the private attribute to change that
If a class contains methods, during runtime they will not be availble from the console as
all instances of classes are converted to generic JS objects. You could create a function to
convert the object to JSON, for ex:

 }
 } // output: 0, 1, 2, 3, ART, HISTORY, SCIENCE, LITURATURE

 const enumArray = Object.keys(SubjectArea);
 for (const value of enumArray.slice(enumArray.length / 2)) {
 console.log(value);
 } // output: ART, HISTORY, SCIENCE, LITURATURE
}

export enum SubjectArea {
 ART = 'Arts and Shit', HISTORY = 'History', SCIENCE = 'Science and Math', LITURATURE = 'English'
}

printArrays(): void {
	let label;
 for (const subject in SubjectArea) {
 console.log(subject);
 console.log(SubjectArea[subject]);
 if (SubjectArea[subject] === 'History') {
 label = subject;
 }
 }

 let label2 = Object.keys(SubjectArea).find(it => SubjectArea[it] === 'History');
}

Methods and Functions

export class User {
 id: number;
 name: string;

Output:

 getRole(): string {
 return 'standard';
 }

 static fromHttp(user: User): User {
 const newUser = new User();
 newUser.id = user.id;
 newUser.name = user.name;
 return newUser;
 }
}

 this.dataService.getUser(13).subscribe(
 next => {
 console.log(next);
 console.log(typeof next);
 let user: User = next;
 console.log(user)
 console.log(typeof user)
 let user2: User = next as User;
 console.log(user2)
 console.log(typeof user2)
 let user3: User = User.fromHttp(next);
 console.log(user3);
 console.log(typeof user3)
		// this will only work for users created from the created method
 console.log(user3.getRole())
 });

{ id: 13, name: "matt" }
object
{ id: 13, name: "matt" }
object
{ id: 13, name: "matt" }
object
{ id: 13, name: "matt" }
object
standard

JavaScript is not an 'opinionated' langauge, meaning there are a million ways to do the same
fucking thing with no reccomendation on how to optimize. Ex:

All do the same thing. Notice the backticks instead of quotes in the first.

Actaully the last console statement above would print an Object in JSON form. If you're
ever debugging and keep seeing Object object, try switching to commas. Also filtering can
be done in different styles:

But by far the most mind-bogglingly stupid feature of JS is eqaulity. == Abstract eqaulity
 === Strict eqaulity The short story is always use Strict eqaulity. As abstract eqaulity will
attempt to cast parameters to the same type before comparision.

Reminder: JavaScript SUCKS

console.log(`To buy this book it will cost: ${myBook.priceWithTax(.2)} dollars`);
console.log('To buy this book it will cost: ' + myBook.priceWithTax(.2) + ' dollars');
console.log('To buy this book it will cost: ', myBook.priceWithTax(.2), ' dollars');

 const oddNumbers = numbers.filter(
 num => {
 return num % 2 === 1;
 }
);
	
 const evenNumbers = numbers.filter(num => num % 2 === 0);

Revision #1
Created 16 April 2022 23:35:30 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

https://github.com/denysdovhan/wtfjs

