Securing an Angular
Application

Security is constantly evolving. You'll need to do your own research on the specific vulnerabilities
of your application. However, the following explains fundamental security services provided by

Angular.

Before we move on understand the difference between the folowing two terms:
Authentication: Validiating a users credentials to access a system or part of a system

Authorization: Checking if a user has access to a restricted system.



* Angular Application
. Security Checklist

Use HttpOnly and Secure cookies

Sign the cookies and JWT with a strong secret
Do not store sensitive data in JWT Payload
Ensure JWT lib does not accept alg: none
Transport all data over HTTPS

Use Content Security Policy ver. 2

Do not allow inline scripts (no unsafe-inline)
User integrity property of external scripts
Avoid Angular's bypassSecurityTrustx()

Use CSRF protection with CSRF-Token

Avoid custom auth library implementation
Check all APl endpoints for role-based access

Use AoT compilation for templates check

Learn more at:
angular-academy.com/security



https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650149639971.png

Json Web Tokens

JWT Tokens are used to store an active session after a user has been authenticated.

Using JWTs there is no need to store the username and password directoly in memory. Everything
needed for the server to authenticate and authorize exists in memory, and every token can expire
after a set amount of time.

A typical JWT is a long string seperated into 3 parts seperated by the '.' symbol.

eyJhbGciOiJlUzI1NilsInR5cCI61kpXVC)9.ey)zdWIiOilxMjMONTY30DkwliwibmFtZSI61kpvaG4gRGOlliwiaWFOljoxNTE2MjM5 M,
DlyfQ.SfIKxwR|SMeKKF2QT4fwpMef36POk6y)V_adQssw5c

The Header contains 2 parameters: The algorithm used to decode the token and the token type,
which in our case should always be "JWT"

"alg": "H5256",
Iltypll: IIJWTII
}

Next is the Payload of the token, it is encoded in Base64. We can put anything we'd like into here.
Never put sensitive information like passwords in here, as it can easily be decoded.

{
"sub": "1234567890",
"name": "John Doe",
"role": admin

}

Finally the Signature, which is generated from the payload and header. Note it is encoded first
using the header-defined algorithm, then Base64, so decoding it must be done in reverse order.

HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

{ my-256-bit-secret }

)


https://jwt.io/

A private key stored on the server side is used to sign the token so we can be sure only our server
issued the token.

Server Side JWT Usage

The first step is choosing your method of authentication. Whatever method of authentication you
use on the backend is up to you. A few different types of authentication include:

Basic Auth: Comparing plaintext username/passwords directly on the server. Straightforward but
remember it is bad practice to hard code any passwords into the code. If using this method | would
recommend storing the hashed password in a relational database.

LDAP: Lightwieght Directory Acess Protocol is used for directory services authentication. Connect
to an external server which holds credentials. Pretty complicated to set up but very secure when
done right.

OAuth : OAuth/OAuth2 is an open standard for securing access to APIs. Connect to a existing third
party login provider such as OKTA, Google, Facebook, etc. Some configuration is required and there
is a bit of a learning curve, some api documentations are better than others.

On the backend implement the dependecies for whichever auth service you choose, and also any
JWT dependencies that are needed. The next steps are as followed:

1. Write a method to generate a Token, choose what fields you want in the payload.
2. Choose method of authentication. RSA encrytption requires a public and private key. It is
ok to have a new Key generated every startup

The below is written in Java and I'm not going into specifics on the classes used here because there
are already a lot of good guides out there. | into more detail on RSA encryption and signing in my

Ktor tutorial

(private RSAPrivateKey privateKey;

Oprivate RSAPublicKey publicKey;

a

J@PostConstruct initkeys() throws NoSuchAlgorithmException {
[[KeyPairGenerator generator = KeyParGenerator.getinstance("RSA");
[(Mgenerator.initialize(2048);

[IKeyPair keypair = generator.generateKeyPair();

[[privateKey = (RSAPRivateKey) keypair.getPrivate();
[Mpublickey = (RSAPublicKey) keypair.getPublic();

0}

a


https://bookstack.mitchellhenschel.com/books/ktor/page/signing-json-tokens-with-rsa

Opublic String generateToken(String name, String role) {
0..

Securely Storing the JWT
Token

Returning the JWT Token as a HTTP respsonse puts the token in local javascript memory. This puts

the application at risk of Cross-Site-Scripting. The production standard way of storing tokens are
SSL-encrypted HTTP-only cookies.

Revision #3
Created 16 April 2022 22:53:46 by Elkip
Updated 17 April 2022 01:35:51 by Elkip



