
So far we've only looked at static website design and reading data. Forms allow users to input data.
There are two different ways to do forms in Angular Template-driven and Reactive.

Also here's a cheatsheet on types of databinding in Angular, which i will go into more detail on
later:

Forms

Template driven forms are the easier of the 2 to understand. The idea is pretty
straightforward:

Template-Driven Forms

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650151620581.png

We use an HTML element, such as <input> and create variables in the backing
typescript file to bind to the elements.
So as the value in an input changes the typescript variable is automatically updated
We don't actually submit the form to a server, but instead have a submit button
which will be bound to a method in the typescript file that can read the variables to
get the form's values

Import the FormsModule in app.module.ts to interact with forms in different template
driven ways

Adding the HTML required tag will enable dynamic class processing on the field for some
nice CSS visual cues. Ex: <input type="text" class="form-control" id="name" placeholder="user
name" [(ngModel)]="formUser.name" name="name" required> Now when loading the page we see
the following classes on that field when it is left blank:
4225e7e04d64a2cb1b977f203b437cca.png
There are 2 styles of CSS Angular uses on form validation, ng-valid and ng-invalid, to
indicate whether the form element passes validation.
Other control styles:

ng-touched / ng-untouched - Tells whether user has touched the element
ng-pristine / ng-dirty - Tells whether the value has been edited

We can change the behavior of these css styles in the css file

We can also add template references so we can check for errors across a form or model

Requires ReactiveFormsModule imported in app.module.ts

Template Form Validation

// When the input box is invalid
// and has been touched change border to red
input.ng-invalid.ng-touched {
 border: 1px solid #f00;
}

<form #userForm="ngForm">
...
<button type="submit" class="btn btn-primary" (click)="onSubmit()"
[disabled]="userForm.invalid">Save</button>

Reactive Forms

We create an Object in the typescript that is bound to the HTML

We have an HTML form that has some controls

To get the data into the forms we use a patch value which allows us to take each of the
labels and provide a value for it

We can inject the FormBuilder dependency into the constructor and use it to remove the
patch values and form controls we added manually.

 roomForm = new FormGroup({
 roomName : new FormControl('roomName')
 });

<form [formGroup]="roomForm">
 <div class="form-group">
 <label for="name">Name</label>
 <!-- Notice below the formControlName doesn't need to be bound with [] bc the formGroup has already
been applied -->
 <input type="text" class="form-control" id="name" placeholder="room name"
[formControlName]="roomName">
 <div class="alert alert-danger"></div>
 </div>
 <button type="button" class="btn btn-primary" (click)="onSubmit()">Save</button>
</form>

 ngOnInit(): void {
 this.roomForm.patchValue({
 roomName : this.room.name,
 location : this.room.location
 });
 }

 onSubmit(): void {
 this.room.name = this.roomForm.controls['roomName'].value;
 this.room.location = this.roomForm.value['location'];
 // TODO: Call a method in the dataService to save the room
 }

 constructor(private formBuilder: FormBuilder) {
 }

And then the HTML can be simplified

And validation is very simple in reactive forms. Angular gives us an object type called a
validator

 ngOnInit(): void {
 this.roomForm = this.formBuilder.group({
 roomName : this.room.name,
 location : this.room.location
 });

 for (const layout of this.layouts) {
 const layoutCapacity = this.room.capacities.find((lc) => lc.layout === Layout[layout]);
 const initialCapacity = layoutCapacity == null ? 0: layoutCapacity.capacity;
 this.roomForm.addControl(`layout${layout}`, this.formBuilder.control(initialCapacity));
 }
 }

 <div class="form-group" *ngFor="let layout of layouts">
 <label for="layout{{layout}}">{{ layoutEnum[layout] }}</label>
 <input type="number" class="form-control" id="layout{{layout}}" formControlName="layout{{layout}}">
 </div>

 this.roomForm = this.formBuilder.group({
 roomName : [this.room.name , Validators.required],
 location : [this.room.location, [Validators.required, Validators.minLength(2)]]
 });

Revision #2
Created 16 April 2022 23:24:24 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

