Forms

So far we've only looked at static website design and reading data. Forms allow users to input data.
There are two different ways to do forms in Angular Template-driven and Reactive.

Also here's a cheatsheet on types of databinding in Angular, which i will go into more detail on
later:

Angular Data Binding

by coding guider

Oneway Binding

<p>{{ name }}</p>

Property Binding

<input [value]="name" />

Attribute Binding

<button [attr.aria-label]="OK">0K</button>

Twoway Binding

<input [(ngModel)]="name” />

Event Binding - 1

<button (click)="onSave()">Save</button>

Event Binding - 2

<input [value]="name" (input)="name = $event.target.value” />

Template-Driven Forms

e Template driven forms are the easier of the 2 to understand. The idea is pretty
straightforward:

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650151620581.png

o We use an HTML element, such as <input> and create variables in the backing
typescript file to bind to the elements.

o So as the value in an input changes the typescript variable is automatically updated

o We don't actually submit the form to a server, but instead have a submit button
which will be bound to a method in the typescript file that can read the variables to
get the form's values

e Import the FormsModule in app.module.ts to interact with forms in different template
driven ways

Template Form Validation

e Adding the HTML required tag will enable dynamic class processing on the field for some
nice CSS visual cues. Ex: <input type="text" class="form-control" id="name" placeholder="user
name" [(ngModel)]="formUser.name" name="name" required> Now when loading the page we see
the following classes on that field when it is left blank:
4225e7e04d64a2cb1b977f203b437cca.png

e There are 2 styles of CSS Angular uses on form validation, ng-valid and ng-invalid, to
indicate whether the form element passes validation.

e Other control styles:
o ng-touched / ng-untouched - Tells whether user has touched the element
o ng-pristine / ng-dirty - Tells whether the value has been edited

e We can change the behavior of these css styles in the css file

// When the input box is invalid
// and has been touched change border to red
input.ng-invalid.ng-touched {
border: 1px solid #f00;
}

e We can also add template references so we can check for errors across a form or model

<form #userForm="ngForm">

<button type="submit" class="btn btn-primary" (click)="onSubmit()"

[disabled]="userForm.invalid">Save</button>

Reactive Forms

e Requires ReactiveFormsModule imported in app.module.ts

e We create an Object in the typescript that is bound to the HTML

roomForm = new FormGroup({

roomName : new FormControl('roomName')

1);

e We have an HTML form that has some controls

<form [formGroup]="roomForm">
<div class="form-group">
<label for="name">Name</label>
<!-- Notice below the formControIName doesn't need to be bound with [] bc the formGroup has already
been applied -->
<input type="text" class="form-control" id="name" placeholder="room name"
[formControlIName]l="roomName">
<div class="alert alert-danger"></div>
</div>

<button type="button" class="btn btn-primary" (click)="onSubmit()">Save</button>

</form>

e To get the data into the forms we use a patch value which allows us to take each of the
labels and provide a value for it

ngOnlInit(): void {
this.roomForm.patchValue({
roomName : this.room.name,
location : this.room.location
ok
}

onSubmit(): void {

this.room.name = this.roomForm.controls['roomName'].value;
this.room.location = this.roomForm.value['location'];

// TODO: Call a method in the dataService to save the room

}

e We can inject the FormBuilder dependency into the constructor and use it to remove the
patch values and form controls we added manually.

constructor(private formBuilder: FormBuilder) {

}

ngOnlInit(): void {
this.roomForm = this.formBuilder.group({
roomName : this.room.name,

location : this.room.location

1)

for (const layout of this.layouts) {
const layoutCapacity = this.room.capacities.find((Ic) => Ic.layout === Layout[layout]);
const initialCapacity = layoutCapacity == null ? 0: layoutCapacity.capacity;
this.roomForm.addControl("layout${layout}", this.formBuilder.control(initialCapacity));
}
}

e And then the HTML can be simplified

<div class="form-group" *ngFor="let layout of layouts">
<label for="layout{{layout}}">{{ layoutEnum[layout] }}</label>
<input type="number" class="form-control" id="layout{{layout}}" formControIName="layout{{layout}}">

</div>

e And validation is very simple in reactive forms. Angular gives us an object type called a
validator

this.roomForm = this.formBuilder.group({
roomName : [this.room.name , Validators.required],

location : [this.room.location, [Validators.required, Validators.minLength(2)]]

1)

Revision #2
Created 16 April 2022 23:24:24 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

