
The default data format is JSON, which can be used with pretty much any backend.
Java Spring uses JSON by default
Python Flask can be configured for JSON with the Flask-JSON library

The api needs to return a text JSON data via HTTP GET for specified endpoints
Here's an example route setup:

HTTP VERB URL Action

GET /api/rooms/ Get All Rooms

GET /api/rooms/123 Get the room with id 123

POST /apt/rooms Add a Room

PUT /api/rooms Update a Room

One important thing before we get into accessing REST api from angular: Never store plaintext
passwords in Angular. Since all Angular code is run through the browser it wouldn't be hard to
crack.

First thing to do is import HttpClientModule from @angular/commons in app.module.ts
Then we can import HttpClient into the constructor and use that to perform HTTP calls

Connecting to a REST
Endpoint

Choosing a Backend

Connecting Angular

 constructor(private http: HttpClient) {
 console.log(environment.restUrl);
 }

 getUser(id: number): Observable<User> {
 return this.http.get<User>(environment.restUrl + '/api/users/' + id);

The get method above accepts a generic type as a hint to the compiler. getUser is actually
returning a JS Object with fields that match the user class, but it's not actaully an instance of a
User.

Of course, it's never as easy as that. If we tried to run the above service method we would
get an error something like: [your-host]/api/users/[id] has been blocked by CORS policy: No 'Access-
Control-Allow-Origin header is present'

This means the server was reached but the reply was blocked.
CORS is a security policy implemented by browsers to protect users against what are
known as 'hijacking attempts'

Basically JavaScript calls a server to get data to display on the page. As long as it
comes from the same server as the JS, we're OK. But if the call is to a different
server (called a cross-origin request) the request is blocked.
To allow requests to different servers we'll need to enable Cross-Origin Resource
Sharing to give explict permission
Also the port number is enough to define a unique server. Eg. localhost:4200 and
localhost:8080 are concidered different servers
CORS is enabled and configured on the Backend

The following example is using Java Spring, but this should exemplify the fundemental
idea for any backend.

You could put all the preprocessing code in the dataService class subscription within the ngInit
method, but that can lead to sloppy code. Instead use the pipe method within the dataService class
function which is called for the same effect.

 }

Configuring CORS

@Configuration
public class CORSConfig implements WebMvcConfigurer {
 @Override
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/api/**")
 .allowedMethods("GET", "POST", "PUT", "DELETE")
 .allowedOrigins("http://localhost:4200");
 }
}

Pre-Processing REST Data

In the below example we create a JSON type user from the User object recieved from the api

Sometimes the data will not be available right away. In this case it would be nice to display
something like "Loading, please wait."

export class User {
 id: number;
 name: string;

 static fromHttp(user: User): User {
 const newUser = new User();
 newUser.id = user.id;
 newUser.name = user.name;
 return newUser;
 }
}

	// some.component.ts
 ngOninit {
 	 this.dataService.getUser(13).subscribe(
 next => {
 console.log(next);
 console.log(typeof next);
 console.log(next.getRole())
 });
 }

//data.service.ts
 getUser(id: number): Observable<User> {
 return this.http.get<User>(environment.restUrl + '/api/users/' + id)
 .pipe(
 map(data => {
 return User.fromHttp(data);
 })
);

Dealing with Slow and Unresponsive
Connections

To do this we create a boolean in the typescript file for the component loading the data

And then we can query that parameter from the HTML

We can add an additional parameter to the data service to catch errors.

For helpful error messages, make sure you properly set the return status code from the back end.
Then you can customize the response based on the status code. By default a nonresponsive server
returns status code 0 to the browser.

	message = "Loading... Please wait."
 loadingData = true;

 ngOnInit(): void {
 this.dataService.getRooms().subscribe(next => {
 this.rooms = next;
 this.loadingData = false;
 });
	}

<div *ngIf="loadingData">{{message}}</div>

But what if the entire backend is down?

 message = "Please wait... getting the list of rooms"

 ngOnInit(): void {
 this.dataService.getRooms().subscribe(next => {
 this.rooms = next;
 this.loadingData = false;
 },
 (error) => {
 console.log('error', error);
 if (error.status === 402) {
 this.message = "Sorry - payment is required to use this application."
 } else {
 this.message = "Sorry, something went wrong. Please try again later.";
 }
 });

The best way to do this is by creating a counter and recursively calling a load data function.

Say you save some data and it redirects to the view page. The data might not be immedatly
available if there is a delay on the backend, so the console will get an error like 'Object is null'.

To prevent this we can use the null check op in TypeScript:

Retrying on error

 reloadAttempts = 0;

 loadData() {
 this.dataService.getRooms().subscribe(next => {
 this.rooms = next;
 this.loadingData = false;
 },
 (error) => {
 console.log('error', error);
 if (error.status === 402) {
 this.message = 'Sorry - payment is required to use this application.'
 } else {
 this.reloadAttempts++;
 if (this.reloadAttempts <= 10) {
 this.message = 'Sorry, something went wrong. Trying again...';
 this.loadData()
 } else {
 this.message = 'Sorry, something went wrong. Please contact support.'
 }
 }
 });
 }

A Common Bug

 <table>
 <tr>
 <td>id</td><td>{{ room?.id }}</td>
 </tr>

So it will only display if the variable is not null. Note that this is one of the few situations to use this,
it's generally not good practice.

To confirm a delete, update, etc. It is very simple to accomplish in Angular

Concider the following component code for a calander app:

 <tr>
 <td>name</td><td>{{ room?.name }}</td>
 </tr>
 <tr>
 <td>location</td><td>{{ room?.location }}</td>
 </tr>
 </table>
 <h4>This room can accomodate:</h4>
 <table *ngIf="room.capacities">
 <tr *ngFor="let layoutCapacity of room.capacities"> <!-- repeat the tr for each capacity -->
 <td>{{ layoutCapacity.layout }}</td><td>{{ layoutCapacity.capacity }}</td>
 </tr>
 </table>

Confirming Action

 deleteBooking(id: number): void {
 const result = confirm('Are you sure you wish to delete this booking?');
 if (result) {
 this.message = 'Deleting data...';
 this.dataService.deleteBooking(id).subscribe(
	 ...

Pre-Fetching Data and Using
Resolvers

 ngOnInit(): void {
 this.dataService.getRooms().subscribe(
 next => this.rooms = next

We have 3 different data services making calls asyncrounsly. This could lead to problems when the
page is loading, as the users/rooms might be unavailable when the booking is loaded. To solve this
we could nest each data service call within the next block or increment a counter, but this makes
the code syncrounous and slows down the user experience.

The solution is to create a resolver. A resolver is an object which resolves an observable. The
resolver does the subscribing and then waits for the data to become available. In the above case
we extract the subscription component for users and rooms from the calander component and add
them to two new services: prefetch-rooms.service.ts:

);
 this.dataService.getUsers().subscribe(
 next => this.users = next
);

 const id = this.route.snapshot.queryParams['id']
 if (id) {
 this.dataService.getBooking(+id).subscribe(next => {
 this.booking = next;
 this.dataLoaded = true;
 this.message = '';
 });
 } else {
 this.booking = new Booking();
 this.dataLoaded = true;
 this.message = '';
 }

 }

import { Injectable } from '@angular/core';
import {Observable} from "rxjs";
import {Room} from "./model/Room";
import {Resolve} from "@angular/router";
import {DataService} from "./data.service";

@Injectable({
 providedIn: 'root'
})
export class PrefetchRoomsService implements Resolve<Observable<Array<Room>>>{

prefetch-users.service.ts

Then in app.module.ts we add the following to the routes:

So now when we navigate to addBooking or editBooking the resolvers are going to be set up so our
data is available within the route, although it is hidden. Now we can extract the data into the edit-
calander.component.ts as follows:

 constructor(private dataService: DataService) { }

 resolve() {
 return this.dataService.getRooms();
 }
}

...
Resolve<Observable<Array<User>>>{

 constructor(private dataService: DataService) { }

 resolve() {
 return this.dataService.getUsers();
 }
}

const routes: Routes = [
 { path : 'editBooking', component : CalendarEditComponent, resolve : {rooms : PrefetchRoomsService, users :
PrefetchUsersService}},
 { path : 'addBooking', component : CalendarEditComponent, resolve : {rooms : PrefetchRoomsService, users :
PrefetchUsersService}},
 ...

 constructor(private dataService: DataService,
 private route: ActivatedRoute,
 private router: Router) { }

 ngOnInit(): void {
 this.rooms = this.route.snapshot.data['rooms']
 this.users = this.route.snapshot.data['users']

 const id = this.route.snapshot.queryParams['id']
 if (id) {
 this.dataService.getBooking(+id)
 .pipe(
 map (booking => {
 booking.room = this.rooms.find(room => room.id === booking.room.id);
 booking.user = this.users.find(user => user.id === booking.user.id);
 return booking;
 })
)
 .subscribe(next => {
 this.booking = next;
 this.dataLoaded = true;
 this.message = '';
 });
 } else {
 this.booking = new Booking();
 this.dataLoaded = true;
 this.message = '';
 }

 }

Revision #2
Created 16 April 2022 23:19:27 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

