
One of the most useful tools for front end design is Bootstrap. It can be installed with:
npm install bootstrap jquery popper.js
The file Angular.json contains where to find certain elements of the application, such as
the Bootstrap file.
For example:

This would apply the css in styles.css to and node modules every page in the application

In app.module.ts:

Building a Site

Bootstrap

			...
 "assets": [
 "src/favicon.ico",
 "src/assets"
],
 "styles": [
 "src/styles.css",
 "node_modules/bootstrap/dist/css/bootstrap.min.css"
],
 "scripts": [
 "node_modules/jquery/dist/jquery.min.js",
 "node_modules/popper.js/dist/umd/popper.min.js",
 "node_modules/bootstrap/dist/js/bootstrap.min.js"
]
 },
		 ...

Routing Basics

Then in app.component.html:

router-outlet will be replaced with whatever component it finds in the router module with the given
URL

The wild card symbol in routing is ** . So to set up a 404 page use:

const routes: Routes = [
 // The extension of the URL, and what component or action should be loaded
 { path : 'admin/users', component : UsersComponent }
];

@NgModule({
 declarations: [
 AppComponent,
 MenuComponent,
 CalendarComponent,
 RoomsComponent,
 UsersComponent
],
 imports: [
 BrowserModule,
	// It is nessecary to add this module with the routes
	// It never changes, cerimonial code.
 RouterModule.forRoot(routes)
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

<div class="container">
 <app-menu></app-menu>
 <router-outlet></router-outlet>
</div>

// Note: It's usaully production standard to put these in a seperate file
// called app.routing.module.ts
const routes = [
 { path : '', component : `HomeComponent },
 { path : '404', component : PageNotFoundComponent },

The wild card must always come at the end

The problem with the above is that the links perform a GET request on the server,
reloading the entire Angular application every time.

Angular is intended to be a single page application
Solution: Remove all href tags that link to a server and replace them with a click event
function.

This requires the use of the Routing package from @angular/routing, and is added to
the constructor In the menu.html:

In the menu.component.ts class:

 { path : "**", redirectTo : '/404' }
];

Making Links work with Routing

 ...
 Rooms
 ...

@Component({
 selector: 'app-menu',
 templateUrl: './menu.component.html',
 styleUrls: ['./menu.component.css']
})
export class MenuComponent implements OnInit {

 constructor(private router: Router) { }

 ngOnInit(): void {
 }

 navigateToRoomsAdmin() {
 // navigate to /admin/rooms
 this.router.navigate(['admin','rooms']);
 }

}

To have a url that changes within an application we use yet another library named
ActiveRouting

If we want to store data so users can see it later, it must be connected to a backend
Spring, ExpressJS, RubyOnRails, etc.

When the data arrives from the backend (the Observable) we create an event to contain it
in an array.
For the above reason we use getters and setters of type Observable

Routing for Sub-Components

 rooms: Array<Room>;
 selectedRoom: Room;

 constructor(private dataService: DataService,
 private route: ActivatedRoute) { }

 ngOnInit(): void {
 this.rooms = this.dataService.rooms;
 // inspect the URL to see if there is a parameter on the path
 this.route.queryParams.subscribe((params) => {
 const id = params['id'];
 if (id) {
 // cast a variable to a number using +
 this.selectedRoom = this.rooms.find(room => room.id === +id);
 }
 })
 }

Models and Views

 private rooms: Array<Room>;
 private users: Array<User>;

 getRooms(): Observable<Array<Room>> {
 return of(this.rooms);

Then in the ngInit function we subscribe to that event

Pipes allow us to change the way something is displayed, such as a date

selectedDate = new Date();

<p>The selected date is {{selectedDate | date:'yyyy-MM-dd'}}</p>

Check out some other pipe usages in the documentation

The alternative to the above would be

You could also specify the locale this way. But pipes are a pretty cool feature of Angular.

 }

 getUsers(): Observable<Array<User>> {
 return of(this.users);
 }

 ngOnInit(): void {
 this.dataService.getRooms().subscribe(next => this.rooms = next);
	}

Pipes

ngOnInit(): void {
 const date: string = formatDate(this.selectedDate, 'yyyy-MM-dd', 'en-US');
}

Revision #1
Created 16 April 2022 23:25:17 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

https://angular.io/guide/pipes

