Building a Site

Bootstrap

e One of the most useful tools for front end design is Bootstrap. It can be installed with:
npm install bootstrap jquery popper.js

e The file Angular.json contains where to find certain elements of the application, such as
the Bootstrap file.

e For example:

"assets": [
"src/favicon.ico",
"src/assets"

1

"styles": [
"src/styles.css",
"node_modules/bootstrap/dist/css/bootstrap.min.css"

1

"scripts": [
"node_modules/jquery/dist/jquery.min.js",
"node_modules/popper.js/dist/umd/popper.min.js",
"node_modules/bootstrap/dist/js/bootstrap.min.js"

]

h
m ...

This would apply the css in styles.css to and node modules every page in the application

Routing Basics

e In app.module.ts:

const routes: Routes = [
// The extension of the URL, and what component or action should be loaded
{ path : 'admin/users’, component : UsersComponent }

I

@NgModule({
declarations: [
AppComponent,
MenuComponent,
CalendarComponent,
RoomsComponent,
UsersComponent
I
imports: [
BrowserModule,
[J/ It is nessecary to add this module with the routes
0/ It never changes, cerimonial code.
RouterModule.forRoot(routes)
I
providers: [],
bootstrap: [AppComponent]
o)
export class AppModule { }

Then in app.component.html:

<div class="container">
<app-menu></app-menu>
<router-outlet></router-outlet>

</div>

router-outlet will be replaced with whatever component it finds in the router module with the given
URL

e The wild card symbol in routing is **. So to set up a 404 page use:

/I Note: It's usaully production standard to put these in a seperate file
// called app.routing.module.ts
const routes = [

{ path : "', component : "HomeComponent },

{ path : '404', component : PageNotFoundComponent },

{ path : "**" redirectTo : '/404"' }
I

The wild card must always come at the end

Making Links work with Routing

e The problem with the above is that the links perform a GET request on the server,
reloading the entire Angular application every time.
o Angular is intended to be a single page application

e Solution: Remove all href tags that link to a server and replace them with a click event
function.

o This requires the use of the Routing package from @angular/routing, and is added to
the constructor In the menu.html:

Rooms

In the menu.component.ts class:

@Component({
selector: 'app-menu’,
templateUrl: './menu.component.html’,
styleUrls: ['./menu.component.css']

})

export class MenuComponent implements Onlnit {
constructor(private router: Router) { }

ngOnlInit(): void {
}

navigateToRoomsAdmin() {
// navigate to /admin/rooms
this.router.navigate(['admin','rooms']);

}

Routing for Sub-Components

e To have a url that changes within an application we use yet another library named
ActiveRouting

rooms: Array<Room>;

selectedRoom: Room;

constructor(private dataService: DataService,

private route: ActivatedRoute) { }

ngOnlInit(): void {
this.rooms = this.dataService.rooms;
// inspect the URL to see if there is a parameter on the path
this.route.queryParams.subscribe((params) => {
const id = paramsl['id'];
if (id) {
// cast a variable to a number using +
this.selectedRoom = this.rooms.find(room => room.id === +id);
}
})

Models and Views

e If we want to store data so users can see it later, it must be connected to a backend
o Spring, Express)S, RubyOnRails, etc.

e When the data arrives from the backend (the Observable) we create an event to contain it
in an array.

e For the above reason we use getters and setters of type Observable

private rooms: Array<Room>;

private users: Array<User>;

getRooms(): Observable<Array<Room>> {

return of(this.rooms);

getUsers(): Observable<Array<User>> {
return of(this.users);

}

Then in the nglnit function we subscribe to that event

ngOnlInit(): void {

this.dataService.getRooms().subscribe(next => this.rooms = next);

0}

Pipes

Pipes allow us to change the way something is displayed, such as a date
selectedDate = new Date();

<p>The selected date is {{selectedDate | date:'yyyy-MM-dd'} }</p>

Check out some other pipe usages in the documentation

The alternative to the above would be

ngOnlInit(): void {
const date: string = formatDate(this.selectedDate, 'yyyy-MM-dd', 'en-US');
}

You could also specify the locale this way. But pipes are a pretty cool feature of Angular.

Revision #1
Created 16 April 2022 23:25:17 by Elkip
Updated 16 April 2022 23:40:55 by Elkip

https://angular.io/guide/pipes

