
An Angular Component can be thought of as part of a web page
It's a combination of HTML and code, although it could consist of only one
Generally it's a piece of display with functionality
We can then reuse components, such as a menu component, across the site.

Within a project components are broken down into folder, which usually have 4 parts:
HTML - .html - contains layout
CSS - .css/.sass/.ccss/.less - stylesheets for the component
Class - .ts - typescript file backing HTML
Spec- .spec.ts - A second typescript file for unit testing (created by default but can
be deleted)

Angular Architecture

Component File Structure

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650152316745.png

Not a lot to discuss here since the class above is very similar to java. Just a couple key differences:

Annotations are called Decorators in Angular
The HTML tag will be named after the 'selector' field
Below that templateUrl and styleUrl give the locations of the HTML and CSS files,
respectively
export is the equivalent of public

A tag for this component in HTML would look like: <app-header></app-header>

Angular-Cli can generate components automatically
ng generate component <name> OR ng g c <name>

The app.component.html contain all the components in the application
index.html is always loaded first and only contains the reference to <app-root>
Angular Does Not Assemble the HTML. All of the code in the application is compiled
into JS files, which is then read by the browser to create the complete HTML files

Check them out by viewing the source of the webpage
By default in Angular, the URL does not change on page nagivation, but this can be easily
changed

A Code Snippet
 import {Component, EventEmitter, Output} from '@angular/core';

 @Component({
 selector: 'app-header',
 templateUrl: './header.component.html',
 styleUrls: ['./header.component.css']
 })
 export class HeaderComponent {

 constructor() { }

 @Output()
 pageRequested = new EventEmitter<number>();

 onChangePage(page: number): void {
 console.log("page " + page + "clicked");
 this.pageRequested.emit(page);
 }
 }

This also means you can't use the 'Back' button on the browser as there is no history
There is also a file called app.module.ts which tells the application where to find
components

CLI tool updates this automatically, so only worry about this if you are creating the
file structure manaully

Template Interpolation means we can have a variable in our TypeScript file that can be
referenced from the HTML
Use {{ varName }} for variables and ((methodName)) for methods and [attName] for
attributes in the HTML
Code can be bound to events, such as a button press

<app-page1 [hidden]="currentPage !==1"></app-page1> <app-page3 *ngIf="headerComponent.pageRequested
=== 3"></app-page3>

While these might have the same effect, the ngIf method also changes the source code

It is possible to read child properties from the parent's class file.
Very similar to Java inheritance, this is a one-way interaction

It is also possible to write to child class attributes from HTML

Template Variables

Component Interaction

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2022-04/image-1650152364551.png

The app component is the parent of all pages
The child component can send a message to the parent component which can listen for
certian events

You can create a single instance of a class that can be accessed by any component along
with its functions, in Angular this is called a Service
The only Special feature about Services is that once instantiated it will be automatically
injected into any classes in the Application using dependency injection
Generate a Service with: ng generate service <name> or ng g s <name>

Note: AngularCLI will automatically add 'service' to the end of the name
The @Injectable decorator allows the class to be injected
One could configure the injectable to only allow access from certian classes, but this is an
advanced feature
To inject a Service, you must add the service to the injected class constructor parameters

As a general rule you should not be referencing services within the HTML
What is better is to create a local variable in the component

To overcome the above issue, we can use the Observer Design Pattern
This method is used extensively in the code of Angular itself

The idea is fairly simple:
1. Define an object of type Observable.

This is a special object type which can send out notifications (or events)
We can write code to trigger these events

2. Define objects to observe these observable objects, called observers
This is done within the data service

Services and Dependency Injection

The Observer Design Pattern

 ngOnInit(): void {
 	// This will automatically update if the books array is changes.
 // Because it is a referenced variable
 this.books = this.dataService.books;
 // This will not update automatically if the books array changes.
 // It is a local variable.
 this.numBooksByMe = this.books.filter(it => it.author === 'Me').length;
 }

The Subject object is nearly identical to EventEmitter, except it comes from the rxjs
package, a reactive programming library included in Angular.

EventEmitter is a wrapper of Subject
The recomendation is always to use EventEmitter as the observable

If an error is thrown the service is unsubscribed from the event, you need to add special
code in the error handler to perisit the connection
You should also unsubscribe observers when they are finished, or else a memory leak may
occur.

Use the OnDestroy method
To inject an Interface there is an extra step in app.module.ts:

 this.dataService.bookAddedEvent.subscribe(
 // first var: the incoming data
 (newBook) => {
 if (newBook.author === 'Me') {
 this.numBooksByMe++;
 }
 },
 // second var: error handling
 (error) => {
 console.log('An error occurred:', error);
 },
 // Optional complete event always takes no parameters
 () => {
 	// complete event
 }
);

@NgModule({
 declarations: [
 AppComponent,
 Page1Component,
 HeaderComponent,
 Page2Component,
 Page3Component,
 FooterComponent
],
 imports: [
 BrowserModule
],

Tests don't use the app.module.ts so you'll have to add it into tests where applicable.
Except in tests you use useExisting rather than useClass

By default, Github will exclude /node_modules in the .gitignore file. This is good because this folder
can be very large, and the contents can be easily obtained when opening an Angular project.
However, if using Continous Integration, the build will fail without these files. So including these
files should be concidered if using a workflow which automatically deploys.

 // When provided with <InterfaceName> use <ServiceName>
 providers: [{provide : 'DataServiceInterface' , useClass : DataService}],
 bootstrap: [AppComponent]
})
export class AppModule { }

A Note on .gitignore

Revision #2
Created 16 April 2022 23:38:17 by Elkip
Updated 17 April 2022 01:31:42 by Elkip

