
Longitudinal studies are commonly designed in many research fields in order to see changes over a
time interval shared by all participants. Joint modeling consists of two interlinked sub-models with
any type of outcome (continuous, binomial, etc). One of the most commonly used is longitudinal
sub-model is the linear mixed effect model and a cox proportional hazard with time-to-event sub-
model.

Joint modeling reduces the bias of parameter estimates by accounting for the association between
the longitudinal and time-to-event data. In clinical trials this often leads to more efficient
estimation of the treatment effect on both sub-model outcomes.

Let's assume Yi1 and Yi2 are two outcomes measured on subject i. We can attempt to specify a joint
density f(yi1, yi2), but this is only feasible if we assume certain things about the marginal
association among the longitudinally measured elements within each of the outcome vectors. This
is easier when both outcomes and conditional models are of the same type, but this is not a
requirement. When Yi1 and Yi2 are of different types, or in the case of unbalanced data, this
becomes cumbersome. Thus, extensions to higher dimensional data involves considerable
challenges as this would require assumption on larger covariance structure and higher order
associations.

We can avoid direct specification of the joint density f(yi1, yi2) are and reduce the modeling tasks
by specifying a model for each outcome separately:
         f(yi1, yi2)   =  f(yi1 | yi2) f(yi2)
                            = f(yi2 | yi1) f(yi1)

The main drawback is that this requires reflection about the plausible association between Yi1 and
Yi2 that may be inappropriate in some settings. For example, in a clinical trial with two main post-
randomization outcomes conditioning on one of the outcomes may attenuate (make smaller) the
treatment effect on the other. Also, it is difficult to implement in high-dimension data.

In previous chapters we've seen how random effects can be used to generate an association
structure between repeated measurements of a specific outcome.  We can use a similar approach
to generate association between two outcomes.

Mutlivariate and Joint Models
for Longitudinal Data

Conditional Models

Shared-Parameter Models



\( f(y_{i1}, y_{i2}) = \int f(y_{i1}, y_{i2} | b) f(b) db = \int f(y_{i1} | b) f( y_{i2} | b) f(b) db \)

Where b is a vector of ranom effects common to the outputs Yi1 and Yi2, and assume independence
of both outcomes conditional on b.

Again the outcomes do not have to be of the same type, but we assume b represents a common
set of unobserved characteristics of the subject that governs both models.

Examples:

Let Yi1 represent a vector of longitudinal continuous outcomes and Yi2 = (Ui, ��i) with U = min(Ti, Ci)
with Ti as the potential time to the event of interest, Ci as the potential censoring time, and ��i =
I(Ti <= Ci). Let Yi1 follow a random intercept model:
Y = β0 + b0i + β1t + εi1t
and let the event time of interest follow a proportional hazard model so that:

where λ0(t) is an unspecified baseline hazard function

In another case, the shared-parameter random effect models may imply very strong assumptions
for the association structure between outcomes. Consider this example where Yi1 and Yi2 are two
longitudinal continuous outcomes that share a common random intercept:

The joint random-effects imply more flexible correlation patterns. Consider this example where Yi1
and Yi2 are dependent on separate random effects b1 and b2 which are themselves correlated:
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This demonstrates the role of the correlation between the outcome-specific random effects in the
between-process outcome correlation at any two time points. The restriction is imposed by the
shared-parameter model is relaxed in the same sense that the model no longer assumes the
product of within process correlations equals the between-process correlation and thus allows a
more general dependence structure.

In many situations (especially when we have multiple outcomes/high-dimensional data) the
previous methods will not be feasible to estimate. Methods that reduce the dimensions are more
appropriate. The idea is to use a factor-analytic or principal component type of analysis to reduce
the dimensions. After, the estimated factors can be analyzed using any of the classical longitudinal
models. The disadvantage is that the inferences are restricted to the factors and cannot be
extended to the original outcome variables, so certain assumptions need to be imposed in the case
of unequally spaced observations or unbalanced designs.

For a bi-variate response Yi = (Yi1, Yi2)', we can assume a general model in the form of:

with g-1 as the inverse link function which is allowed to change for each univariate outcome and bi
~ N(0, G).

A general first-order approximate expression for the variance-covariance matrix of Yi is:
    Var(Yi) ~= Δi Zi GZ'iΔ'i + Vi

Where

 and 
and R( α ) is the correlation matrix and the Ξi is a diagonal matrix with over-dispersion parameters
along the diagonal:

If there are no random effects then the model is referred to as a marginal generalized linear
model (MGLM). For the special case of a continuous and binary endpoint the MGLM is in the form
of:

with

Defining the Generalized Linear Models
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vi2 = μi2(1-μi2)

In a shared parameter the variance of Yi is approximately equal to:

As a result the approximate correlation among the two outcomes is:

The correlation depends on the fixed effects through vi2

SAS Code
libname s857 "/Datasets";
options fmtsearch=(s857.formats);
options nofmterr;

proc mixed data=s857.Tbi;
class sex naccid  status;
model Mem1=time  naccageb status sex time*educ time*naccageb  /solution;
random Int time/sub=naccid;
run;

proc mixed data=s857.Tbi;
class sex naccid  status;
model Att1=time  naccageb status sex time*educ time*naccageb  /solution;
random Int time/sub=naccid;
run;

/* Multivariate models  */
data s857.tbi_long;
length scale $10;
set s857.tbi;
Outcome=Mem1;scale='Memory';output;
Outcome=Att1;scale='Attention';output;
keep Outcome Scale time trauma_dich dep2yrs status sex educ naccageb naccid;
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run;
proc mixed data=s857.tbi_long covtest method=ML;
class Scale sex naccid  status;
model Outcome=Scale*time Scale*naccageb Scale*status Scale*time*status
 Scale*sex Scale*time*educ Scale*time*naccageb  /solution;
random Int time/sub=naccid;
*random int/sub=Scale type=un;
run;

proc nlmixed data=s857.tbi_long;
parms b0=-0.17 b1=0.43 b2=0.39 b3=-0.83 b4=0.08 b5=-0.01
s2e_mem=0.361 g11=0.60
	c0=0.05 c1=-0.05 c2=0.5 c3=0.1 
s2e_att=0.19;
if Scale='Memory' then do;
	mean=b0+b1*time + b2*status + b3*sex +b4*time*status +b5*time*naccageb  +u1 ;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_mem)) -0.5*(outcome-mean)**2/(s2e_mem);
end;
if Scale='Attention' then do;
	mean=c0+c1*time + c2*status + c3*time*status  +u1;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_att)) -0.5*(outcome-mean)**2/(s2e_att);
end;
model outcome~general(ll);
random  u1~normal([0],[g11]) subject=naccid;
run;

/*Shared parameter model*/
title 'Memory';
proc mixed data=s857.tbi covtest method=ML;
class trauma_dich sex naccid  status;
model Mem1=time status  sex time*status time*naccageb  /solution;
random intercept/sub=naccid;
run;
title 'Attention';
proc mixed data=s857.tbi covtest method=ML;
class trauma_dich sex naccid  status;
model Att1=time /solution;
random intercept/sub=naccid;
run;

proc nlmixed data=s857.tbi_long;



parms b0=-0.13 b1=0.43 b2=0.39 b3=-0.83 b4=0.08 b5=-0.01
s2e_mem=0.361 g11=0.60
	c0=0.05 c1=-0.05 c2=0.5 c3=0.1 gamma=0.20
s2e_att=0.19;
if Scale='Memory' then do;
	mean=b0+b1*time + b2*status + b3*sex +b4*time*status +b5*time*naccageb  +u1 ;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_mem)) -0.5*(outcome-mean)**2/(s2e_mem);
end;
if Scale='Attention' then do;
	mean=c0+c1*time + c2*status + c3*time*status  +gamma*u1;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_att)) -0.5*(outcome-mean)**2/(s2e_att);
end;
model outcome~general(ll);
random  u1~normal([0],[g11]) subject=naccid;
run;
proc nlmixed data=s857.tbi_long;
parms b0=-0.13 b1=0.43 b2=0.39 b3=-0.83 b4=0.08 b5=-0.01
s2e_mem=0.361 g11=0.60 g22=.01
	c0=0.05 c1=-0.05  c2=-0.3 c3=-0.1 gamma=1 g33=0.01
s2e_att=0.19;
if Scale='Memory' then do;
	mean=b0+b1*time + b2*status + b3*sex +b4*time*status +b5*time*naccageb  +u1 +u2*time;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_mem)) -0.5*(outcome-mean)**2/(s2e_mem);
end;
if Scale='Attention' then do;
	mean=c0+c1*time + c2*status + c3*time*status  +gamma*u1 +u3*time;
	ll = -0.5*log(3.14159265358) - log(sqrt(s2e_att)) -0.5*(outcome-mean)**2/(s2e_att);
end;
model outcome~general(ll);
random  u1 u2 u3~normal([0,0,0],[g11,0,g22,0,0,g33]) subject=naccid;
run;
proc nlmixed data=s857.tbi_long;
parms b0=-0.13 b1=0.43 b2=0.39 b3=-0.83 b4=0.08 b5=-0.01
s2e_mem=0.361 g11=0.60 g22=.01 g12=0.01
	c0=0.05 c1=-0.05  c2=-0.3 c3=-0.1  
s2e_att=0.19;
if Scale='Memory' then do;
	mean=b0+b1*time + b2*status + b3*sex +b4*time*status +b5*time*naccageb  +u1 ;
	dens = -0.5*log(3.14159265358) - log(sqrt(s2e_mem)) -0.5*(outcome-mean)**2/(s2e_mem);
	ll=dens;
end;



if Scale='Attention' then do;
	mean=c0+c1*time + c2*status + c3*time*status  +u2;
	dens = -0.5*log(3.14159265358) - log(sqrt(s2e_att)) -0.5*(outcome-mean)**2/(s2e_att);
	ll=dens;
end;
model outcome~general(ll);
random  u1 u2~normal([0,0],[g11,g12,g22]) subject=naccid;
run;

/*
if dist='Binary' then do;
		eta=v0 + v1*u1   ;
		p=exp(eta)/(1+exp(eta));
		ll = (outcome)*log(p) + (1-outcome)*log(1-p);
end;
*/
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