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Unlike randomized clinical trials, observational studies must adjust for differences such as
confounding to ensure patient characteristics are comparable across treatment groups. This is
frequently addressed through propensity scores (PS), which summarizes differences in patient
characteristics between treatment groups. A Propensity Score is the probability that an
individual will be assigned to receive the treatment of interest given their measured
covariates. Matching or Weighting on the PS is used to adjust comparisons between the 2 groups,
thus reducing the potential bias in estimated effects of observational studies.

The following use cases assume a binary treatment or exposure in order to infer causality. Given a
treatment and control with one outcome observed per unit, can we estimate the treatment effect?
Note we can only estimate the treatment effect, identification of causality is not possible through
observational studies.

Note the following definitions before proceeding:

Target Population - The group of individuals who we wish to infer conclusions about
Balance - Similarity of patient characteristics across treatment
Precision - Denotes certainty about the estimate of association between treatment and
outcome of interest; More precision means more narrow CIs and greater statistical power.

Propensity scores are most commonly estimated using binomial regression models (logistic
regression, probit, etc.). Other propensity score methods include:

Classification Trees
Bagging/Boosting
Neural Networks
Recursive Partitioning

Basically, any model that provides predictive probability and where all the covariates related to
treatment and outcome that were measured before treatment are included in the propensity score
estimation model. The SAS example below estimates propensity scores for the treatment variable
group predicted from covariates var1, var2, and var3 using a logistic regression:

Propensity Score Weighting
Analysis

Estimation of Propensity Scores

PROC LOGISTIC data=ps_est;
  title 'Propensity Score Estimation';



Once we have the propensity scores estimated, we must make sure the measured covariates are
balanced in order to reduce bias. There are several ways to achieve this:

Graphic of the propensity score distribution - The distribution of propensity score between
the two groups should overlap. Non-overlapping distributions suggest that one or more
covariates are strongly predictive, and variable selection or stratification should be
reconsidered.
Standardized differences of each covariate between treatment groups - the magnitude of
the difference between baseline characteristics of the groups can be calculated depending
on the method of deriving propensity scores. One limitation of this method is the lack of
consensus as to what the threshold should be, though researchers have suggested a
standardized difference of .1 or more denotes meaningful imbalance in the baseline
covariates.
Stratify by deciles or quintiles (5 parts) - By stratifying the propensity score by deciles or
quintiles, a boxplot can represent each quintile.

When the scores aren't balanced, the covariates in the model should be adjusted. This could mean
adding or removing covariates, adding interactions, or substituting a non-linear term for a
continuous one.

After we obtain the propensity score, the next step is to estimate the Average Treatment Effect in
the population (ATE).  Using multiple methods can help strengthen conclusions, while discrepancies
can indicate confounding and/or sensitivity to the analysis approach.

A key diagnostic is the standardized mean difference (SMD)- The normalized difference in
means between two groups for a given covariate. A SMD score of > .1 for a given covariate

  model exposure = var1-var3 / lackfit outroc = ps_r;
  output out = ps_p pred = ps xbeta=logit_ps;
  /* Output the propensity score and the logit of the propensity score */
run;

Covarite Balancing Propensity Scores
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generally indicates imbalance.   

Stratification divides individuals into many groups on the basis of their propensity score values. The
optimal number of strata depends on sample size and the amount of overlap between treatment
and control group propensity scores, however researchers have suggested 5 subclasses is
sufficient enough to remove 90% of bias in the majority of PS studies. The treatment effect for each
subclass is the average effect across strata weighted by stratum-specific standard error:

$$ \hat\mu_{1i} - \hat\mu_{2i} = {{\sum w_i (\bar X_{1i} - \bar X_{2i}) } \over {\sum w_i}}   $$

Where \( w_i = { 1 \over {SE}^2_i} \) (the square of the standard error of the difference between
means). This can be coded in SAS as follows:

Stratification

/* Stratify */
PROC RANK data=ps_p out=ps_strata groups=5;
	var ps_pred;
    ranks ps_pred_rank;
run;

/* Sort */
proc sort data = ps_strataranks;
	by ps_pred_rank;

/* Compute the difference between group means in each stratum,
	as well as the standard error of this within stratum difference */
proc ttest;
  by ps_pred_rank;
  class group;
  var outcome;
  ods output statistics = strata_out;

/* Find stratum specific weights and mutliply by mean difference */
data weights;
  set strata_out;
  if class = 'Diff (1-2)';
  wt_i = 1/(StdErr**2);
  wt_diff = wt_i*Mean;
 
/* Find the mean weighted difference and its standard error */
proc means noprint data = weights;



The goal of matching is to obtain similar groups of treatment and control subjects by matching
individual observations on their propensity scores. It is generally recommended to use 1:1
matching with no replacement to avoid bias. The Nearest Neighbor (or Greedy matching) selects a
control unit for each treated unit based on the smallest distance from the treated unit. The big
problem with this is it depends on the order in which the data is sorted, thus randomization is
necessary.

Nearest Neighbor with calipers is a method which improves NN by allowing a maximum
allowable difference between scores (or caliper width) in order for PS to be matched. Researchers
have suggested a caliper width of .2 times the standard deviation, or a static value such as .1.

The general procedure:

1. Sort observations into random order with each group
2. Transpose data to obtain seperate datasets for treatment and control
3. Merge them into a single dataset, matching each observation in the treatment group with

a single observation in the control group
If no control observations are found in the range, no matched pair is
created

4. After matched pairs have been identified, the difference in outcome means in each group
can be tested ussing a t-test.

Use a correlated-means t-test rather than independant-means (PAIRED keyword in
SAS)

  var wt_i wt_diff;
  output out = total sum = sum_wt sum_diff;
  data total2;
  set total;
  Mean_diff = sum_diff/sum_wt;
  SE_Diff = SQRT(1/sum_wt);

proc print data = total2;

run;

Matching

/* Use the propensity score model probabilities to match case and control 1:1 */
proc psmatch data=ps_p region=cs;
  class exposure;
  psmodel exposure = var1-var3;
  match distance=lps method=greedy(k=1) stat=lps caliper(mult=stddev)=.15;
  assess lps var=(var1-var3)/weight=none plots=(boxplot);
  output out(obs=match)=match1 lps=_Lps matchid=_MatchId;



In IPTW, individuals are weighted by the inverse probability of receiving the treatment they
actually received. So, the target estimand is the treatment effect in the treated population.
Control subjects are weighted by \(1 / (1 - p_i) \) and treated subjects with \( 1/p_i \). The weights
are then used in a Weighted Least Squares regression model.

run;

Inverse Probability of Treatment Weights (IPTW)

data ps_weight;
  set ps_p;
  if group = 1 then ps_weight = 1/ps_pred;
  else ps_weight = 1/(1-ps_pred);
run;

proc means noprint data = ps_weight;
  var ps_weight;
  output out = q mean = mn_wt;
run;

data ps_weight2;
  if _n_ = 1 then set q;
  retain mn_wt;
  set ps_weight;
  wt2 = ps_weight/mn_wt; * Normalized weight;
run;

/* Either of the below can be used to estimate treatment effect
 via weighted least sqaures */
proc glm data = ps_weight2;
  class group;
  model outcome = group / ss3 solution;
  weight wt2;
  means group;
run;

proc reg data = ps_weight2;
  model outcome = group;
  weight wt2;
run



The IPTW method is inclusive of all subjects, so no data loss occurs. However, it is very sensitive to
outliers and can create extreme weights. There exist stabilization techniques which use trimming
or scaling to get weights into a specified range.

Overlap weighting (OW) is a new PS method aimed to address the shortcoming of IPTW. In IPTW,
individuals are weighted by the inverse probability of being in their treatment group, which allowed
under-representing characteristics to count more. In OW, patients are assigned weights which
are proportional to the probability of that patient belonging to the other  treatment
group. That is, treated patients are given a weight of (1 - PS) while non-treated are weighted by
the probability of treatment PS. The target estimand is the average treatment effect for the overlap
population.

These weights are smaller for extreme values so outliers are treated as PS near 1 or 0, and do not
dominate or worsen precision as with IPTW. Patients whose characteristics are compatible with
either group contribute relatively more. The result can be as efficient as randomization. Overlap
weighting creates an exact balance on the mean of every measured covariate when the PS is
estimated by logistic regression. This is advantageous when groups being compared are initially
very different.

We can use the code from IPTW replacing the weight of 1/PS with 1 - PS in the treated group and
1/(1-PS) with PS in the untreated group. Note that adjustments such as trimming have nearly no
effect on the weighted balance of OW.

With the generated weights or matched dataset pick a fitting model to determine the effects of the
exposure on the outcome of interest. If any covariates remain imbalanced, they can be included in
the model. Otherwise, the model should only contain outcome and exposure.

Overlap Weighting

* Generating overlap wieghts;
data overlap;
  set ps_p;
  ow_weight = (EXPOSURE)*(1-ps) + (1 - EXPOSURE)*ps;
run;

* then normalize it;

Estimating Treatment Effect

* Continous Outcome;
proc glm data=overlap2;
  class exposure(ref="0");
  model OUTCOME = EXPOSURE/solution;
  weight ow_weight;



The above code examples use SAS to explain the underlying concepts. There are several R
packages that can provide propensity score weighting with binary treatments, but the newest and
most popular is PSweights. I recommend checking out the documentation and whitepaper (link
below) to understand the functionalities this package can provide.

Overlap Weighting: A Propensity Score Method That Mimics Attributes of a Randomized Clinical
Trials 

Propensity Score Analysis and Assessment of propensity Score Approaches Using SAS Procedures

PSweight: An R Package for Propensity Score Weighting Analysis

https://www.r-causal.org/chapters/08-propensity-scores 

run;

* Dichotomous outcome (in this case coded into several binary variables);
proc genmod data=overlap2;
  class exposure(ref="0");
  model OUTCOME1 = EXPOSURE/dist=BINOMIAL;
  weight ow_weight;
run;

R
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Knowledge graphs are visualization of information with multi-type relations (edges) among some
multi-type entities (nodes) within an environment of interest. The heterogeneous aspect comes
from the graph having two or more types of nodes and two or more types of edges.

In recent studies on Alzheimer's drug repurposing (Reference 1) Graph Neural Networks (GNN)
were used to identify biological interactions from prior knowledge databases containing information
on effective treatments and genes associated with high risk. The nodes of the graph included
drugs, genes, pathways and gene ontology (GO) connected by interactions including drug-target
interaction, drug-drug structural similarity, gene-gene interaction, gene-pathway association, gene-
GO association and drug-GO association. A comprehensive graph can be created combining
existing information from multiple sources on the biological interactions of complex drug-gene
relationships, and from there we can use machine learning to train a model and address the
incomplete knowledge in the graph. Note that in this paper the genes are encoded/embedded,
simply meaning they are represented as numerical vectors/matrices to capture their function. To
give a broad overview of the study's workflow:

1. A knowledge graph is built to describe the interaction between drugs, genes, gene
ontology and pathways

2. Node embeddings are derived using a multi-relational Variational Graph Auto-Encoder
(VGAE)

3. Machine learning model ranks drug-candidates based on multi-level evidence
4. Drug combinations are searched for complementary exposure patterns, using previously

ranked drug candidates

Heterogeneous Graph
Learning

Usage: Alzheimer's Drug Repurposing
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5. Validate drug combinations with "oxidative stress responses" and randomly removing
edges to see if the model can correctly predict interactions

By keeping the focus previously approved drugs, the graph can identify synergy between
medications that treat complex diseases. The "Complementary Exposure Pattern" of analysis used
suggests drug combinations are effective when the target of the drugs hit the disease module
without overlap.

While this study breaks ground in applying knowledge graphs with multi-task learning to
fragmented multi-modal data, it is subject to the limitations of each dataset it combines. The
knowledge graph alone extracts data from:

5,874,261 Universal protein-protein interactions from STRING, Drug Bank, HetioNet,
GNBR, and IntAct
Interaction between genes, drugs, GO, and pathways from Comparative Toxicogenomic
Database (CTD)
Drug-Drug associations based on structural similarities using scores from the RDkit
package
Gene IDs from National Center for Biotechnology information (NCBI)
High confidence Alzheimer's associated genes from Agora's nominated gene list

If any of the data-driven drug efficacy is biased, then so is the model. Some of the datasets
contained in vitro studies (lab based experiments usually in a test tube), which does not guarantee
identical treatment outcomes. Still, given the lack of clinical evidence from a huge list of
compounds, this research could provide insight on drug combinations in future research
opportunities.

One of the key elements in the knowledge graph is the customized deep Variational Graph neural
Auto-Encoder (VGAE), used to incorporate multiple types of relationships (edges). It is a self-
supervised technique which encodes the nodes into a latent vector (embedding) and reconstruct
the graph with the latent vector. This approach allows the incorporation of the uncertainty of our
knowledge of a given node, thus creating a probabilistic distribution. Different weight matrices
were also determined for each type of edge.

Within the Alzeimer's drug GNN Pytorch Geometric was used for the model implementation. It was
trained to reconstruct missing interactions using the node embeddings as an autoencoding
manner. To do this, each node's embedding is iteratively updated by aggregating their neighbors'
embedding, in which the average of the neighbors' features are taken, concatenated with the
current embedding, and applied to a single layer of a neural network.

Transfer learning is to transfer knowledge from previously learned universal models to domain-
specific models. Injecting universal knowledge on pharmacological interactions while prioritizing

VGAE

Transfer Learning

https://pytorch-geometric.readthedocs.io/en/latest/notes/heterogeneous.html


Alzheimer's is a critically important step in identifying uncertainty. The Drug Repurposing

Knowledge Graph (DRKG) network was used as the universal data source, containing over 15
million pharmacological entities including 39 different interactions between compounds and genes
from various biomedical databases. The pretrained embeddings for drugs, genes, pathways and
GOs were used as initial node features and then fine-tuned, but the edges were not always directly
incorporated as the interactions were less accurate.

A node classification task was used to differentiate 743 Alzheimer's associated genes from the
remaining genes. The ongoing hypothesis is that one can predict these genes using the gene
interaction with other genes, GO, and pathways. This classification tool consisted of 2 GraphSAGE
graph convolution layers that sample a node's adjacent neighbors and aggregate their
representation. This was jointly optimized with the VGAE. PcGrad, a research technique that
resolves conflict among multiple tasks' gradients by normal vector projections, was also used to
achieve a better local optimum.

In Embedding electronic health records onto a knowledge network recognizes prodromal features
of multiple sclerosis and predicts diagnosis (reference 2) a modified version of the PageRank
algorithm (the algorithm used by Google to rank web pages) was implemented to embed millions
of EHRs into a biomedical knowledge graph (SPOKE), which contains information from 29 public
databases. The high-dimensional patient health signatures were subsequently used as features in a
random forest to classify patients risk of MS.

The PageRank algorithm outputs a probability distribution to represent the likelihood a person
randomly clicking links will arrive at any particular page. This probability can be calculated for
collections of documents of any size. At the start it is assumed the distribution is evenly divided but
over several iterations the values are adjusted to their theoretical value. If any document links to
another document, the destination document probability rises. In SPOKE, we are looking for
connections between medication, diagnosis, genes and etc rather than links on webpages, and
iterations are continued until the target threshold is reached. Then the final node ranks are used to
create the weights for the patient population, called the Propegated SPOKE Entry Vector (PSEV).
Then vector/matrix arithmatic is applied to produce the Patient-Specific SPOKE Profile Vectors
(SPOKEsigs), and random forest classifiers are used to determine their significance in predicting the
disease.

So to summarize the above in the fewest words, the process is:

1. Find overlapping concepts between SPOKE and EHR
2. Chose any term or concept from the graph to make the cohort
3. Perform PageRank
4. Final node ranks are used to create weights

Node Classification

Usage: SPOKE

https://github.com/gnn4dr/DRKG
https://github.com/gnn4dr/DRKG
https://snap.stanford.edu/graphsage/
https://www.geeksforgeeks.org/page-rank-algorithm-implementation/


[1] Synthesize heterogeneous biological knowledge via representation learning for Alzheimer’s
disease drug repurposing

[2] Embedding electronic health records onto a knowledge network recognizes prodromal features
of multiple sclerosis and predicts diagnosis
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In the practical use of statistics, we don't have an infinite amount of data. An enormous amount of
data is needed to accurately estimate the true distribution non-parametrically. We need to take
small samples of data, from which we can make inferences about the population from. We often
describe this sample as empirical, originating or based on observation.

We model the quantity of interest as a random variable that follows some arbitrary probability
distribution. In the case of discrete random variables, the probability distribution is characterized
by probability mass functions (PMFs). Continuous random variables are represented by
probability density functions (PDF). The area under the PMF and PDF curve is always equal to
1.

Let's assume we have a dataset we wish to use as a sampling engine. We'll assume the data:

is Empirical
is Discrete (given by data points)
has an unknown function defining the distribution

If we want a random number generator that returns data with the same distribution of our
empirical distribution we can do so in 3 steps:

1. Define a cumulative density function (CDF) for our empirical distribution (the
cumulative sum from the PDF, ranging from [0,1] on the y-axis)

2. Create a uniform random generator that gives data in the interval [0,1] 
3. Identify which element of the CDF the random number fits best and count the 'hit' (which

is the x-axis transformation)

Sampling
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How to randomly sample your empirical arbitrary distribution
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Geo-statistics is a subfield of statistics focused on spatial or spatiotemporal datasets, AKA data with
location or longitudinal data with location.

In the following case, we have a large set of longitudinal data with location and we want to make
guesses about the future in those locations. Not to be confused with kriging which is a gaussian
process of estimating a variable at an unobserved location, based on the estimates of nearby or
similar locations. 

The following notes aim to provide the fundamentals of creating a network of connected spaces,
and forecasting techniques for spatial network data.

A network is a discrete set of items (referred to as nodes) with some connection between them
(referred to as edges). Typically, a graph network is represented mathematically as G = (N, E);
with a set of N nodes and E edges.

A parametric model can be used to describe a relationship between independent and dependent
variables. It's not unusual for a time series to exhibit a trend, such as seasonality.

Think of a time series as a series of components: 

1. A trend-cycle component
2. A seasonal component
3. A remainder component

Forecasting with Geospacial
Data

Fun fact: Many of the techniques we use today originated from mining engineers who
desired to know what minerals might lay beyond a surface given a sample.

Networks

Time Series

https://www.geographyrealm.com/danie-krige-kriging/


Recall that in an ordinary multiple linear regression, we have a set of p predictor variables
measuring some response variable (Y) to fit a model like:

$$ Y = \beta_0 + \beta_1 X_1 ... \beta_p X_p + \epsilon $$

Where beta represents the average effect of a unit increase in the predictor Xn (the nth predictor
variable) and epsilon is the error term. The value for these beta coefficients is chosen using the 
least square method, which minimizes the sum of squared residuals (RSS), or the squared
difference in observed minus expected outcome value.

$$ RSS = \Sigma (y_i - \hat y_i)^2 $$

When variables are highly correlated then coefficient estimates can have large variances leading to
poor predictive accuracy.

Lasso regression is a regularization technique for linear regression models. Regularization is a
statistical method to reduce errors caused by overfitting on training data. Instead of trying to
minimize RSS, Lasso uses the equation:

Total Cost = Measure of Fit [RSS] + Measure of magnitude of coefficients

$$ Cost = RSS + \lambda \Sigma | \beta_n | ; \lambda \ge 0 $$

Lambda is the 'tuning' parameter, or shrinkage penalty, and measures the balance of fit and
sparsity. When this term is 0 the parameter has no effect, and as it approaches infinity the
shrinkage penalty becomes more influential. 

Start with full model (all possible features)
"Shrink" some coefficients to 0 (exactly)
Non-zero coefficients indicate "selected" features

The idea is to have as little bias as possible so the variance can be reduced, leading to a smaller
mean squared error (MSE).

Note: This is very similar to ridge regression, except in ridge the coefficients are minimized
toward 0 but must always be > 0

Advanced Machine Learning

Least Absolute Shrinkage and Selection
Operator (LASSO)



Lasso tends to perform better when only a small number of predictor variables are significant, and
ridge when all coefficients have roughly equal importance. To determine which model is better use
k-fold cross validation.

1. Calculate correlation matrix and variance inflation factor values (VIF) for all predictor
variables

2. Fit the lasso regression model and choose a value for lambda
3. Compare to a another regression model by way of k-fold cross-validation

Code

# https://www.r-bloggers.com/2020/05/quick-tutorial-on-lasso-regression-with-example/

library(glmnet)
# Loading the data
data(swiss)
x_vars <- model.matrix(Fertility~. , swiss)[,-1]
y_var <- swiss$Fertility
lambda_seq <- 10^seq(2, -2, by = -.1)
# Splitting the data into test and train
set.seed(86)
train = sample(1:nrow(x_vars), nrow(x_vars)/2)
x_test = (-train)
y_test = y_var[x_test]
cv_output <- cv.glmnet(x_vars[train,], y_var[train],
                       alpha = 1, lambda = lambda_seq, 
                       nfolds = 5)
# identifying best lamda
best_lam <- cv_output$lambda.min
best_lam

# Output
# [1] 0.3981072

# Rebuilding the model with best lamda value identified
lasso_best <- glmnet(x_vars[train,], y_var[train], alpha = 1, lambda = best_lam)

Process



pred <- predict(lasso_best, s = best_lam, newx = x_vars[x_test,])
# Combine predicted and actual values
final <- cbind(y_var[test], pred)
# Checking the first six obs
head(final)

# Output
#            Actual    Pred
#Courtelary   80.2 66.54744
#Delemont     83.1 76.92662
#Franches-Mnt 92.5 81.01839
#Moutier      85.8 72.23535
#Neuveville   76.9 61.02462
#Broye        83.8 79.25439

# R-squared
actual <- test$actual
preds <- test$predicted
rss <- sum((preds - actual) ^ 2)
tss <- sum((actual - mean(actual)) ^ 2)
rsq <- 1 - rss/tss
rsq

# Inspecting beta coefficients
coef(lasso_best)

# Output
#6 x 1 sparse Matrix of class "dgCMatrix"
#                         s0
#(Intercept)      66.5365304
#Agriculture      -0.0489183
#Examination       .        
#Education        -0.9523625
#Catholic          0.1188127



#Infant.Mortality  0.4994369

XGBoost is a software library installed independently from whatever language is used to interact
with it. Most popular languages have an interface, and there is a CLI version.

The library is focused on computational speed and model performance, and there are a number of
advanced features. As the name suggests it uses a model optimization technique called gradient
boosting, or gradient tree boosting. Let's quickly review.

The original paper: Greedy Function Approximation: A Gradient Boosting Machine [PDF], 1999

The objective is to minimize the loss of the model by adding 'weak learners' ( usually a decision
tree) using a gradient-descent like procedure. It is considered a stage-wide additive model, and
was the landmark in the use of differentiable loss functions. The technique could be applied beyond
binary classification problems to regression, multi-class classification models and more.

How it works:

1. A loss function to be optimized

This depends on the type of problem being solved. In the case of a regression one may used
squared error (RSS), and a classification problem might have a logarithmic loss.

The benefit of gradient boosting is it does not need to derive a new boosting algorithm for each
loss function; it is generic enough that any differentiable function can be used.

2. A decision tree to make predictions

Specifically regression trees that output real values for model outputs. This allows subsequent
model outputs to be added together, and 'correct' the residuals.

Trees are constructed in a greedy manner, choosing best split points based on purity scores (e.g.
Gini index) to minimize the lost. It is common to constrain the tree in specific ways, such as max
nodes, layers, splits, or leaf nodes.

3. An additive model to add weak learners to minimize the loss function

A gradient descent procedure is used to minimize the loss when adding trees.

XGBoost

Gradient Boosting

https://statweb.stanford.edu/~jhf/ftp/trebst.pdf


Traditionally, gradient descent is used to minimize a set of parameters. Error or loss is calculated
and weights are updated to minimize that error.

Instead of parameters we have decision tree regression models. After calculating the loss in a
given model, we must add the tree/model that reduces the loss (i.e. follow the gradient). This is
done by parameterizing the tree then modifying the parameters of the tree to move in the right
direction by reducing the residual loss. The output of the new tree is then added to the existing
sequence of trees in an effort to correct the final output of the model. 

A fixed number of trees are added or training stops once loss reaches an acceptable level or no
longer improves based on the validation set.

1. Tree Constraints - As mentioned above, constraints on number of leaves, nodes, etc.
2. Shrinkage/Weighted Updates - The predictions of each tree are added together

sequentially and the contribution of each tree added can be weighted to 'slow down' the
learning algorithm.

3. Random sampling/Stochastic Gradient Boosting - Instead of using the full dataset, at
each iteration a sub-sample of the training data is used (without replacement) to fit the
base learner.

4. Penalized learning/Regularized Gradient Boosting - The decision trees can be made
more complex by adding regularization terms (often called weights) to smooth the final
learnt weights to avoid over-fitting. By design this tends to select a simple and predictive
model.

XGBoost supports all of the above common enhancements. In addition the software library can run
distributed, parallel, out-of-core, and with cache optimization to make best use of hardware.
Additionally, it can automatically handle missing data and provide continued training for new data.

Even with all these cool features XGBoost will only take numeric data as input. Code your
character inputs to factors to create a matrix.

I'm going to include a list of hyperparameters below; These provide a simple interface for
complicated tuning variables.

Full reference: https://xgboost.readthedocs.io/en/latest/parameter.html

Parameter Explanation

eta default = 0.3 learning rate / shrinkage. Scales the
contribution of each try by a factor of 0 < eta < 1

Common Enhancements to Gradient Boosting

XGBoost Features

https://xgboost.readthedocs.io/en/latest/parameter.html


gamma default = 0 minimum loss reduction needed to make
another partition in a given tree. larger the value, the
more conservative the tree will be (as it will need to make
a bigger reduction to split) So, conservative in the sense of
willingness to split.

max_depth default = 6 max depth of each tree…

subsample 1 (ie, no subsampling) fraction of training samples to use
in each “boosting iteration”

colsample_bytree default = 1 (ie, no sampling) Fraction of columns to be
used when constructing each tree. This is an idea used in
RandomForests

min_child_weight default = 1 This is the minimum number of instances that
have to been in a node. It’s a regularization parameter So,
if it’s set to 10, each leaf has to have at least 10 instances
assigned to it. The higher the value, the more conservative
the tree will be.

Once you have your boosting model prepared run  xgb.train() and  xgboost() to train the boosting
model. Both return a wrapper of class xgb.Booster, but xgb.train is an advanced interface which
xboost is a simple wrapper for the former.

One of the parameters set in  xgboost() is nrounds - the max number of boosting iterations (AKA how
many decision trees get added). Setting this too low will result in a model which is too simple, and
setting it too high leads to overfitting. The goal is to find the middle ground.

We should cross-validate to determine the correct numbe of rounds and other hyperparameters.
XGBoost has a function to do this for us:  xgb.cv()

Code

# https://www.r-bloggers.com/2020/10/an-r-pipeline-for-xgboost-part-i/
# https://www.kaggle.com/c/titanic/data
# 
library(xgboost)
library(Matrix)
library(xgboost)
library(ggplot2)
library(ggthemes)
library(readr)
library(dplyr)
library(tidyr)
library(stringr)
theme_set(theme_economist())



set.seed(1234) # For reproducibility.

directoryWhichContainsTrainingData <-  "./xg_boost_data/train.csv"
directoryWhichContaintsTestData <- "./xg_boost_data//test.csv"

titanic_train <- read_csv(directoryWhichContainsTrainingData)
titanic_test <- read_csv(directoryWhichContaintsTestData)

titanic_train <- titanic_train %>%
  select(Survived,
         Pclass,
         Sex,
         Age,
         Embarked)

titanic_test <- titanic_test %>%
  select(Pclass,
         Sex,
         Age,
         Embarked)

str(titanic_train, give.attr = FALSE)
## tibble [891 x 5] (S3: tbl_df/tbl/data.frame)
##  $ Survived: num [1:891] 0 1 1 1 0 0 0 0 1 1 ...
##  $ Pclass  : num [1:891] 3 1 3 1 3 3 1 3 3 2 ...
##  $ Sex     : chr [1:891] "male" "female" "female" "female" ...
##  $ Age     : num [1:891] 22 38 26 35 35 NA 54 2 27 14 ...
##  $ Embarked: chr [1:891] "S" "C" "S" "S" ...

previous_na_action <- options('na.action') #store the current na.action
options(na.action='na.pass') #change the na.action

titanic_train$Sex <- as.factor(titanic_train$Sex)
titanic_train$Embarked <- as.factor(titanic_train$Embarked)

#create the sparse matrices
titanic_train_sparse <- sparse.model.matrix(Survived~., data = titanic_train)[,-1] 
titanic_test_sparse <- sparse.model.matrix(~., data = titanic_test)[,-1] 



options(na.action=previous_na_action$na.action) #reset the na.action

str(titanic_train_sparse)
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##   ..@ i       : int [1:3080] 0 1 2 3 4 5 6 7 8 9 ...
##   ..@ p       : int [1:6] 0 891 1468 2359 2436 3080
##   ..@ Dim     : int [1:2] 891 5
##   ..@ Dimnames:List of 2
##   .. ..$ : chr [1:891] "1" "2" "3" "4" ...
##   .. ..$ : chr [1:5] "Pclass" "Sexmale" "Age" "EmbarkedQ" ...
##   ..@ x       : num [1:3080] 3 1 3 1 3 3 1 3 3 2 ...
##   ..@ factors : list()

dim(titanic_train_sparse)
## [1] 891   5
head(titanic_train_sparse@Dimnames[[2]])
## [1] "Pclass"    "Sexmale"   "Age"       "EmbarkedQ" "EmbarkedS"

# booster = 'gbtree': Possible to also have linear boosters as your weak learners.
params_booster <- list(booster = 'gbtree', eta = 1, gamma = 0, max.depth = 2, subsample = 1, 
colsample_bytree = 1, min_child_weight = 1, objective = "binary:logistic")

# NB: keep in mind xgb.cv() is used to select the correct hyperparams.
# Here I'm only looking for a decent value for nrounds; We won't do full hyperparameter tuning.
# Once you have them, train using xgb.train() or xgboost() to get the final model.

bst.cv <- xgb.cv(data = titanic_train_sparse, 
              label = titanic_train$Survived, 
              params = params_booster,
              nrounds = 300, 
              nfold = 5,
              print_every_n = 20,
              verbose = 2)

# Note, we can also implement early-stopping: early_stopping_rounds = 3, so that if there has been no 
improvement in test accuracy for a specified number of rounds, the algorithm stops.

res_df <- data.frame(TRAINING_ERROR = bst.cv$evaluation_log$train_error_mean, 
                     VALIDATION_ERROR = bst.cv$evaluation_log$test_error_mean, # Don't confuse this with the 



test data set. 
                     ITERATION = bst.cv$evaluation_log$iter) %>%
  mutate(MIN = VALIDATION_ERROR == min(VALIDATION_ERROR))

best_nrounds <- res_df %>%
  filter(MIN) %>%
  pull(ITERATION)

res_df_longer <- pivot_longer(data = res_df, 
                              cols = c(TRAINING_ERROR, VALIDATION_ERROR), 
                              names_to = "ERROR_TYPE",
                              values_to = "ERROR")

g <- ggplot(res_df_longer, aes(x = ITERATION)) +        # Look @ it overfit.
  geom_line(aes(y = ERROR, group = ERROR_TYPE, colour = ERROR_TYPE)) +
  geom_vline(xintercept = best_nrounds, colour = "green") +
  geom_label(aes(label = str_interp("${best_nrounds} iterations gives minimum validation error"), y = 0.2, x 
= best_nrounds, hjust = 0.1)) +
  labs(
    x = "nrounds",
    y = "Error",
    title = "Test & Train Errors",
    subtitle = str_interp("Note how the training error keeps decreasing after ${best_nrounds} iterations, but 
the validation error starts \ncreeping up. This is a sign of overfitting.")
  ) +
  scale_colour_discrete("Error Type: ")

g

bstSparse <- xgboost(data = titanic_train_sparse, label = titanic_train$Survived, nrounds = best_nrounds, 
params = params_booster)
## [1]  train-error:0.207632 
## [2]  train-error:0.209877 
## [3]  train-error:0.189675 
## [4]  train-error:0.173962 
## [5]  train-error:0.163861 
## [6]  train-error:0.166105 
## [7]  train-error:0.166105 
## [8]  train-error:0.162739 



 

## [9]  train-error:0.156004

titanic_test <- read_csv(directoryWhichContaintsTestData)

predictions <- predict(bstSparse, titanic_test_sparse)
titanic_test$Survived = predictions

titanic_test <- titanic_test %>% select(PassengerId, Survived)
titanic_test$Survived = as.numeric(titanic_test$Survived > 0.5) 

SVMs, AKA vector networks, are supervised max-margin models for classification and regression
analysis. The concept is very easy to understand; We use data labels to generate multiple
separating regions (called hyperplanes) that separate the data points.

The goal is to maximize the margin, so that both groups of points are equidistant from the plane
that divides them. 

Hard margins are typically referred to as linear lines that can separate the data. Of course, this is
a vast oversimplification. In reality, data is rarely linearly separable. Soft margins must be used to
allow for weaker boundaries. This is where the support vector machine comes in. 

To adapt to nonlinear relationships SVM uses a kernel function. This is a mathematical function
used to map input data into a high-dimensional feature space. Common kernel functions include:

Support Vector Machine (SVM)

https://bookstack.mitchellhenschel.com/uploads/images/gallery/2024-11/image.png


Linear AKA dot product - K(x, xi) = sum(x * xi)
Polynomial - K(x,xi) = 1 + sum(x * xi)^d; When d=1 this is the same as linear regression.
Manually setting d allows for curved lines in the input space
Radial basis function - K(x,xi) = exp(-gamma * sum((x – xi^2)); Good for complex
polygons
& more

A key player in the kernel function are the support vectors, vectors which contain the data points
closest to the hyperplane which divides the data.

This gives SVMs with proper training data a high predictive accuracy for classification tasks.
However, one downside is there is no 'probability' in the sense of how effective a prediction is.

Code

dataset = read.csv('Social_Network_Ads.csv') 
dataset = dataset[3:5] 

# Encoding the target feature as factor 
dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1)) 

# Splitting the dataset into the Training set and Test set 
install.packages('caTools') 
library(caTools) 

set.seed(123) 
split = sample.split(dataset$Purchased, SplitRatio = 0.75) 

training_set = subset(dataset, split == TRUE) 
test_set = subset(dataset, split == FALSE)
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dat = data.frame(x, y = as.factor(y)) # make output a factor
library(e1071) # contains svm function
  
classifier = svm(formula = Purchased ~ ., 
                 data = training_set, 
                 type = 'C-classification', 
                 kernel = 'linear',
                 scale = TRUE) # do not scale
print(classifier)
plot(classifier, dat)

# Predicting the Test set results 
y_pred = predict(classifier, newdata = test_set[-3]) 

# Making the Confusion Matrix 
cm = table(test_set[, 3], y_pred) 


