Module 5: Multivariate
Normal Distribution

A variable X follows a discrete probability distribution if the possible values of X are either:

e A finite set
e A countable infinite sequence

px(xi) = P(X=xi) is called the probability mass function (PMF)

o px(xi) >= 0 as it is a probability

e The sum of PMF for all values of X =1

Recall that in a Discrete Probability Distribution :

Expected value: E(X) = Y5 x;px (x;)

Variance: V(X) = ‘Eil(xg—E(X))sz(xi)

Cumulative distribution function (CDF):

Fe) =PXSx) = ) py(x)

[ Xj<X

In a Continuous Probability Distribution:
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fx(x)dx = P(x < X < x + dx)

[2 fe(dx = 1

Fy(x)=P(X <x) = f;fx(t)dt (cumulative dist. function)
E(X) = [ xfy(x)dx

VO = [, (x = w2 fe(x)dx

Because in a discrete set we are not concerned with the values in between our domain values.

Moment Generating Function

Moments are expected values of X, such as E(X), E(X2) = E(V), E(X3), etc. This, can also be
calculated using the Moment Generating Function (MGF):

My (t) = E(e")

The rth moment of X, E(X") can be obtained by differentiating MX(t) r times with respect to t and
setting t=0

e M (0) =1
« M (0) = E(X)

o« M (0) = E(X?) -> V(X) = M"_(0) - (MI_(0))2
e In general, Mx(r)(O) = E(X")

In short, the nth moment is the nth derivative of MGF.

Uniqueness: if X and Y are two random variables and Mx(t) = My(t) when |t| < h for some positive
number h, then X and Y have the same distribution

Note: MGF does not exist for all distributions (E(etX) may be infinity)

Important Distributions
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X ~ Binomial(n, p) melo, 1]
X = the number of successes in n trials when the probability of success in each trail is p.

We can think of X as the sum of n independent Bernoulli(p) random variables, with the same p for
every Xi

n
X = Z X;; X; = 1 with probability p, else 0; X;s are independent
=1

e PMF:

(:) p*(1—p)" ™~

Expected value = E(X) = np

Variance = V(X) = np(1-p)

MGF = M_(t) = (pe' + (1-p))"

e Two discrete random variables are independent if: P(X = x & Y = y) = P(X = x)*P(Y=y)

Ex. A study which analyzed the prevalence of a disease in a population.

Poisson Distribution
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X ~ Poisson(A) A>0
X = The number of occurrences of an event of interest.

« PMF:
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e -

P(X =x) ="

e Expected Values = E(X) = A
e Variance = V(X)) = A
e MGF = M_(t) = eMe"t-1)

Poisson as an approximation of the Binomial Distribution

e If X ~ Binomial(n, p) and n -> infinity, p-> 0 such that np is a constant => X ~
Poisson(np)

e This assumes each event is independent

e Often used analyzing rare diseases

Ex. Analyzing lung cancer in 1000 smokers and non-smokers. This is binomial but can be estimated
as a Poisson distribution.

Geometric Distribution
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If Y1' Y2, Y3 ... are a sequence of independent Bernoulli(p) random variables then the number of
failures before the first success, X, follows a Geometric distribution.

PMF = P(X = x) = p(1-p)
Expected value = E(X) = (1-p)/p
Variance = V(X) = (1-p)/p?

MGF = M_(t) =p/(1-(1-pe’)

Ex. We want to know the number of times to flip a coin before it lands on heads.

Hyper-Geometric Distribution
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X ~ Hypergeometric(N, K, n)

Suppose a finite population of size N contains two mutually exclusive events: K success events and
N-K failure events. If n events are randomly chosen without replacement X is the number of
success events chosen.

e PMF:

0]

P(X=I)—T

e Expected value = E(X) = nk /N
e Variance = V(X) = ((nK) / N) * (N-K) / N) * (N -n) /(N -1))

Ex. A bag has 7 red beads and 13 white beads. If 5 are drawn without replacement what is the
probability exactly 4 are red?

Uniform Distribution

Uniform(2,10)
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All outcomes are equally likely, they can be discrete or continuous.

X ~ Uniform(a, b) a<b
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e PDF:

1
fx(x) = b—a'aixib
0, otherwise

e E(X) = (a + b)/2
e V(X) = (b - a)2/12
e CDF = F(X) = (x-a)/(b-a),a<=x<=b

e MGF:
Etb_eta
My (t) =1 t(v-a) t#0
1, t=0

We use this distribution we use when we have no idea how the data is distributed.

Log-Normal Distribution

= Lognormal(0,1)
z .
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° 0 2 4 6 8
X

X ~ Lognormal(y , 02) -infinity < p < infinity, 6 > 0

« PDF:

2
fx(x) =——exp|—= ) forx >0

e E(X) = exp(u + 02/2)
e Median = eM
o V(X) = p2 * (e972-1)
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e 10g(X) ~ N(u, 02) - the log is normal
e These distributions are often skewed to the right

Ex. Amount of rainfall, production of milk by cows, or stock market fluctuation often follow
logarithmic functions.

Gamma Distribution
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X ~Gamma(a,A) a>0,A>0
Used to predict the wait time until the first of event of something.
« PDF
a

A
fx(x) =——x%te ™ forx >0

(a)

Alternate paramterization with o« > 0, [[1=1/ A > 0 is used by R:

1 4 _Zz
iI:k 16 9
T (k)6*
e E(X)=a/ A
o V(X) = a/ N
e MGF:

(A)u,t{,l

A-t
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Ex. Used to model time to failure or time to death.

Exponential Distribution
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A special subset of the Gamma Distribution (o = 1)
X ~ Exponential(A) A>0

e PDF =fx(x) =Ae? Xforx >0

e E(X)=1/A

e V(X)=1/A?

« CDF = F (x) = 1-eh X

e MGF =M (t) =A /(A -t), t <A

Ex. The time between geyser eruptions.
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Special case of the Gamma Distribution (o = k/2, A = 1/2)

X ~ X2(k) kisa positive integer (degrees of freedom, "df")

« PDF:
1 k
fx(x) = x(/2)=1e=%/2 forx >0
zkfzf (k/z)
° E(X) = k
e V(X) = 2k

e MGF = (1-2t)K/2 t < 1/2

If you took a sample of Z scores and squared them you would have a chi-squared distribution with
k = 1. Meaning, if Z,,Z2,..2 are independent standard normal random variables then:

Elziz ""Xz(m)

Very few real world distributions follow a chi-sqaure distribution, it is mainly used in hypothisis
testing.

Bivariate Normal Distribution

A bivariate normal distribution is made up of two independent random variables. The two variables
are both normally distributed, and have a normal distribution when added together.

X=()~mvn|p=(}).z= or o
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Function of a Discrete Random Variable

f(x1, %) =
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Suppose X is a discrete random variable and Y is a function of X. Y = g(X)

The Y is also a random variable: P(Y =y) = P(g(X) = y)

Example:
¥ = 0, with probability 1/3
1, with probability 2/3
Y = aX + b (alinear transformation)
Then

v = b, with probability 1/3
~ |la+b,  with probability 2/3

Function of a Continuous Random Variable

Using the same equation as above but assuming the variables are coninuous random variables:

iFY )

The PDF = @Y

Fr(y)=PY <y)=P@X)<y)
=P({x:g(x) =y}

The CDF =

If g is one-to-one (strictly increasing or decreasing) then g has an inverse g1, in the above case:

dg~—'(y)
dy

fr) = fx(g=* ()

Properties of Expectation and Variance
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E(a+ bX) = a+ bE(X)

E(g(X)) = Xig()px(x) or [ g(x)fx(x)dx
E(Xi=1Xi) = Xi=1 E(X)

E(ITY, X;) =[], E(X;) ifthe X|s are independent
V(a + bX) = b2V (X)

VL, X)) =Y%,V(X;) iftheX/s areindependent

Discrete Multivariate Distributions
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Let X and Y be discrete random variables
= Joint probability mass function
"0 <=pxy(x,y) =1
- Zx,y pPxy(x,y) =1
= Marginal probability mass functions
= px(x) = ¥y pxy(x,y) sum pxy(x,y) for all values of y
" py(¥y) = Xepxy(x,¥y) sum pyy(x,y) for all values of x
= Conditional probability mass functions

px,y(x,y)
u Y = = -
Px|y (x] y) py(¥)
. _ . Pxy(xy)
PrixIX = x) px ()

= X and Y are independent if and only if
* pxy(x,¥) = px(x)py(y) forall x andy

Continuous Multivariate Distributions
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Let X and Y be continuous random variables
= Joint density function
" fxy(x,y) =0
* Jf fey(x,y)dxdy =1
= Marginal density functions
* fx() = [ fyy(x,y)dy
" fr) = | fxy(x, y)dx
= Conditional density functions

fxy(xy)
u Y = = -
far (XY =) fr
. _ . = fxr(xy)
frx I =x) =20

= X and Y are independent if and only if
* fxy(xy) = fx()fy(y) forallxandy

Covariance and Correlation

Correlation is defined as an indication as to how strong the relationship between the two
variables is:

cov(X,Y)
JVOV ()

A positive correlation has o > 0 and negative correlation has 0 < 0

pxy = corr(X,Y) = —1<pxy <1

Covariance provides information about how the variables vary together:
cov(X, Y) = R[(X - E(X))(Y - E(Y))]
This is also equivalent to:

cov(X, Y) = E(XY) - E(X)*E(Y)
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Thus if X and Y are independent:
cov(X,Y)=corr(X,Y)=0
However cov(X, Y) = 0 does not imply indepence unless they are jointly normally distributed.

Conditional Expectation of X givenY =y, denoted E(X | Y =y):

Discrete random variables

" EX|Y =y) = Xi; xipxy (1) use the conditional PMF
Continuous random variables

" E(X|Y =y) = jj xfxy (x|y)dx use the conditional PDF

Conditional variance can be defined similarly (use the conditional PMF or PDF)
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